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ABSTRACT 

Biofllms are a natural form of cell immobilization that result from microbial 

attachment to solid supports. Plastic-composite supports were prepared by high temperature 

extrusion of polypropylene and up to 25% (w/w) various agricultural materials and 

micronutrients into 2-3 mm chips. Pure cultures of the ethanol producers Zymomonas mobilis 

(ATCC 31821) or Saccharomyces cerevisiae (ATCC 24859), and mixed cultures with either 

ethanol-producing microorganism and the biofilm forming Streptomyces viridosporus T7A 

(ATCC 39115) were used. A maximum ethanol productivity of 374 g/l/h with 44% yield was 

obtained using soybean hull-zein-plastic composite supports with Z. mobilis and a 10% 

glucose feed. Productivities and yields were generally lower with Z mobilis and S. 

viridosporus fermentations. With S. cerevisiae, the ethanol productivities were lower in both 

pure and mixed-cultures than those observed with Z mobilis. Biofilm presence on the 

support was confirmed by weight gain, support clumping and Gram staining of supports. 

With these differences between pure- and mixed-culture fermentations, long-term performance 

studies of the pure-culture fermentations were further evaluated. 

A packed bed reactor that approximated a trickling bed was custom-made for Z. 

mobilis fermentation. Soy hull-zein polypropylene composites or polypropylene supports 

were used. For S. cerevisiae, a plug-flow reactor was filled with soybean hull-soybean flour 

polypropylene composite supports. Glucose-yeast extract medium containing 10% glucose 

for Zymomonas and 7.5% for Saccharomyces was used. Continuous fermentations in 

replicates of two were carried out for 60 days at various dilution rates. Suspended culture 

fermentations were carried out in 2-liter B. Braun fermentors. There was no difference in the 
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productivities obtained in fermentation between the two supports for Z mobilis, most likely 

because it is a good biofilm former. Maximum productivities of 536 g/l/h and 499 g/l/h were 

obtained with Z. mobilis using polypropylene alone and soybean hull-zein polypropylene 

composite supports respectively. These productivities are the highest reported in the literature 

so far. With S. cerevisiae a maximum productivity of 76,1 g/l/h was obtained on the soybean 

hull-soybean flour plastic composite supports. 

Visible biofilm formation was observed in all the reactors within two weeks of 

operation. Suspension culture fermentations resulted in ethanol productivities of 4.8 g/l/h and 

5.2 g/l/h with yeast and bacteria respectively. A washout was observed in suspension culture 

fermentation when the reactor was operated at a dilution rate of 1.0 h"'. These results suggest 

that, biofilm bioreactors with composite support materials can be used to improve ethanol 

productivity and lower the costs of fermentation. 
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GENERAL INTRODUCTION 

Ethanol, also referred to as ethyl alcohol, grain alcohol, or EtOH, is a primary 

alcohol with the formula C2H5OH. Microbial production of ethanol was an important 

process prior to 1940, when chemical synthesis from petrochemical feedstocks became 

more economical. Environmental concerns and possible future depletion of petroleum 

reserves has revived an interest in ethanol fermentation from renewable biomass 

materials such as agricultural crops and residues and wood. 

Ethanol has been widely used as a solvent and extracting agent. It is useful as 

a fuel, in the preparation of pharmaceuticals and perfumes, and for die production of 

acetic acid, various lacquers, varnishes and dyes. Ethanol is denatured by the addition 

of a non-beverage chemical such as methanol or gasoline. Ethanol concentration is 

expressed in amounts of proof in which 50 and 100% ethanol is 100 and 200 proof, 

respectively. 

Although ethanol has a wide variety of applications, the high production cost is a 

concern. Current ethanol production costs depend on the process used and the feedstock 

(42). Since ethanol is a relatively low cost, high volume product, continued sustainable 

growth in the ethanol industry depends on improvements in the fermentation process 

and recovery. 

The research reported in this dissertation addresses attempts to decrease the 

production costs of ethanol by increasing the productivity by a biofilm reactor using 

yeast and bacteria. A long term study to assess the potential of these biofilm reactors for 
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continuous fermentation will also be discussed. 

Dissertation organization 

This dissertation is composed of a literatiu-e review and two papers which will be 

submitted to scholarly journals. The first manuscript describes the preparation of plastic 

composite supports and evaluation of these supports for enhanced ethanol production in 

biofilm reactors with pure- and mixed-culture fermentations. The second manuscript 

deals with a long term continuous fermentation process using the best composite 

supports and compares the performance of the composite supports with suspension-

culture fermentations. Following the second manuscript is a general summary and 

conclusions. References cited in the general introduction, literature review, summary 

and conclusions are listed in the bibliography. The American Society for Microbiology 

format was used throughout the dissertation. 
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LITERATURE REVIEW 

History 

The knowledge needed to produce alcohol from grains and fruits dates back to 

ancient times (17). The Egyptians and Mesopotamians recorded methods to brew beer 

as early as 2500 B.C. Despite this ancient knowledge of converting sugar and starches 

to ethyl alcohol, modem techniques were not developed until after the middle of the 

19th century. 

The earliest studies of ethanol production through the hydrolysis of cellulose 

were conducted in Germany during World War 1. Between 1920 and 1940 there was 

extensive experimentation in Europe using ethanol as a substitute fuel. The earliest 

recorded use of ethanol as a motor fuel is 1890. Ethanol and methanol, both 

monohydric alcohols, found extensive use in Europe during the pre-World War II era 

(76). In the U.S, alcohol fuels at that time were limited to special fuel mixtures for 

racing car engines. Mixtures of water and alcohol have been employed in injection into 

high-compression aircraft engines (17). The physico-chemical properties of ethanol are 

shown in Table 1. 

Lignocellulose and various other carbohydrates were transformed into fossil fuels 

millions of years ago, thus forming the basis of our present day energy resources. 

Environmental concerns and possible future depletion of petroleum reserves, have 

revived an interest in ethanol. 
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Table 1. Physico-Chemical properties of ethanol 

Formula C2H5OH 
Description Colorless 
Molecular Weight 46.07 
Refractive index (at 15°C) 1.363 
Boiling point °C 78.4 
Flash point °C 13.9 
Specific gravity 

ref to air °C/°C 20/20 
ratio 0.790 

Energy of combustion (KJ/L) 3.53 

Applications 

Two-thirds of the world's ethanol production is presently achieved by microbial 

fermentation. Ethanol blended with gasoline is used as a motor fiiel additive and known 

as gasohol. Gasohol is a registered trade name for 10% agriculturally derived ethanol 

and 90% unleaded gasoline. 

The chemical industry uses ethanol as a feedstock and as a solvent. Chemical 

production of ethanol is primarily from ethylene, a byproduct of petroleum refining. 

Ethanol can also be used to produce ethylene. Ethylene is widely used in the 

production of polymers like polyethylene. Ethanol can be fermented to acetic acid, 

which is used as a food acidulant, and as a road deicer called CMA (calcium 

magnesium acetate) (10). Ethanol is useful in preparations of pharmaceuticals and 

perflunes, for various lacquers, varnishes and dyes. It is considered appropriate for use 

in electric utilities as a turbine fuel for peak load requirements (95). In the U.S more 
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than half of the denatured alcohol produced is sold for solvent purposes in the 

preparations of products such as nitrocellulose coatings, shellacs, inks, hydraulic fluids, 

liquid detergents and soaps, deodorants, perfumes, antiseptics and lotion. Undenatured 

ethanol is also used in the production of vitamins, flavors and essences, mouthwashes, 

blood products and fortified wines (46, 47). In U.S, about 10% of the ethanol usage 

(excluding potable spirits) is in vinegar production (47). Of less importance is the use 

of ethanol as a growth substance in the production of single cell protein. 

The largest market for ethanol is as an ingredient in beverages such as in liquors 

and alcoholic drinks. For beverage production, the raw materials consist primarily of 

starches or sugars. Table 2 gives an example of the various feed stocks used in the 

production of different alcoholic beverages. 

In 1988, 400 million bushels of com in U.S were utilized for ethanol production, 

adding about $1 billion to farm income (95). In 1986, 785 million gallons of ethanol 

were blended into gasoline (74). Present ethanol production costs from fermentation 

range between $1.15 and $1.60 per gallon, depending on the process used and the cost 

of the feedstock (61). In U.S about 340 million bushels (8.6 million metric tons) of 

com are used each year to produce about 850 million gallons (3.2 billion liters) of 

anhydrous ethanol for 10% blends with gasoline. This is enough to blend with 8% of 

the 112 billion gallon (424 billion liter) U.S. gasoline market (99). 
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Table 2. Natural feedstocks used in alcoholic beverage production 

major alcoholic product 
Raw material constituent fermentation distillation 

grapes sugar wine brandy 
apple sugar cider 
molasses sugar rum, arrack 
cherries sugar brandy 
plums sugar plum wine slivovic 
barley starch beer com brandy 
wheat starch beer com brandy 
rye starch beer whisky/brandy 
potatoes starch brandy 
rice starch saki arrack 

Costs of ethanol production 

The cost of ethanol production is less than $1.25 per gallon depending on the 

process used and the feedstock costs. The cost of producing ethanol from com starch 

depends on a number of factors including the cost of com, the value of co-products, the 

cost of energy and enzymes, the size of the production plant, and the level of 

technology in the plant. The development and adoption of new technology is based on 

a strategy to increase the efficiency of inputs, to speed up the production process, and to 

raise the yield of ethanol. The development of microorganisms or strain improvement 

for speeding up the process, the development of markets for co-products and the 

development of farming technologies that raise com yields or reduce input costs may 

lower the feedstock costs and save $ 0.09 to 0.15 per gallon over the current price. 

Current ethanol production is reaching the theoretical limits available from the starch 

portion of the kernel (42). Converting the hull and other fiber portion of the kemel into 
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ethanol could raise ethanol yields from com and also improve die quality of the co-

product with a higher protein content. Wood (98) has discovered a bacterium that 

converts CO2 and hydrogen into acetic acid. Carbon dioxide is a byproduct of ethanol 

production. Converting the CO2 from the ethanol production into acetic acid is 

estimated to cost around $0.75 per gallon, while the acid would sell for more than $1.50 

per gallon. 

Biomass includes agricultural residues, waste streams from agricultural 

processing, municipal solid wastes, yard and wood wastes, and crops grown exclusively 

for their high energy content. Current technology for biomass conversion into ethanol is 

too costly for commercial applications. A kernel of com is composed primarily of 

starch (70%) which is readily reduced to glucose and efficiently fermented into ethanol. 

Most biomass is composed of cellulose (30 to 50%), hemicellulose (25 to 35%), lignin 

(10 to 30%) and ash (traces), depending on the feedstock. The cellulose and 

hemicellulose are made up of long chains of six-carbon (glucose) and five-carbon 

sugars, respectively. Lignin caimot be fermented to ethanol but can be used as a 

combustible fuel. The pre-treatment of converting cellulose into glucose is either by 

harsh mineral acid treatment or by enzymes. Cellulose hydrolysis with HCl or H2SO4, 

often produces toxic byproducts and reduces some of the glucose, making it unavailable 

for fermentation. The alternative enzymatic hydrolysis using cellulases and hemi-

cellulases is often too expensive. Most yeasts and bacteria are not capable of 

fermenting both the pentoses and the hexoses to ethanol. Ingram et al. (43) have 

genetically engineered an Escherichia coli that is capable of fermenting both glucose 
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and pentoses to ethanol. 

Although ethanol has a wide variety of applications, its present high production 

cost is prohibitive. Raw materials are the major costs representing up to 70% of the 

final ethanol price (62). Therefore, a complete utilization of the raw material in 

fermentation is a necessity. Recovery of the product represents another important 

consideration in the process economics. The cost of fermentors represent a large 

fraction of the total equipment cost. Consequently, the use of continuous processes, 

which are simple to operate, which have low energy requirements, and which allow 

more utilization of the expensive substrate, v^all significantly lower the operating costs. 

Capital costs, on the other hand, may be reduced by using mechanically simple, small 

bioreactors with high rates of ethanol production. 

The selection of a suitable and inexpensive raw material is essential to reducing 

the cost of ethanol production. Since, ethanol is a low-cost, high-volume product, the 

economic success depends on capital and operating costs. Considerable amount of 

research has been carried out in the past to develop new highly efficient processes. 

Microbial pathways for ethanol production 

The formation of ethanol occurs by a number of well documented metabolic 

pathways which depend on the microorganism being employed (Table 3). For 

Saccharomyces and a number of other yeasts, ethanol is formed via the Embden-

Meyerhoff-Parnas pathway (Figure 1) where, theoretically, 1 g of glucose yields 0.51 g 

of ethanol and 0.49 g of carbon dioxide. 



www.manaraa.com

9 

Table 3. Ethanol producing Microorganisms and the major carbohydrates used as 
substrates (87, 92). 

Organism Substrate 

Saccharomyces spp. 
S. cerevisiae and Glucose, fructose, galactose, sucrose. 

S. uvarum (carlsbergenesis) maltotriose and xylulose 
S. diastaticus Glucose, maltose, dextrin and starch 
S. rouxii Glucose, fructose, maltose and sucrose 

Kluyveromyces spp. 
K. jragilis and lactis Glucose, galactose, lactose 
K. marxianus Inulin 

Candida spp. 
C. pseudotropicalis Glucose, galactose, lactose 
C. tropicalis Glucose, xylose, and xylulose 

Pacchysolen tannophilus Glucose and xylose 
Schwanniomyces spp. 

S. alluvius Dextrin, starch 
S. castellii Dextrin, starch 

Pichia wickerhamii Xylose, cellobiose 
Endomycopsis fibuligera Dextrin, starch 
Fusarium spp. Xylose 
Rhizopus spp. Xylose 
Mucor spp. Xylose and Arabinose 
Monilla spp. Cellulose, xylan 
Zymomonas mobilis Glucose, fructose, sucrose 
Clostridium spp. 

C. thermocellum Glucose, cellobiose and cellulose 
C. thermohydrosulfuricum Glucose, xylose, cellobiose, sucrose, starch 

Thermoanerobium brockii Glucose, sucrose, cellobiose and starch 
Thermobacterioides acetoethylicus Glucose, sucrose and cellobiose 
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D-Glucose 

^  C  ATP 

Glucose 6-phosphate ADP 
I 

Fructose 6-phosphate ^ 
t ADP 

Fructose 1, 6-diphosphate 
t 

Glyceraldehyde 3-phosphate 

: 
Dihydroxy-acetone phosphate 

NAD' 

PL c NADH 
1, 3-Diphosphoglycerate 

I 
3-Phosphoglycerate 

2-Phosphoglycerate 
t 

Phcsphoenolpyruvate 
t 

Pyruvate c ADP 

ATP 

Acetaldehyde 
4. 

Ethanol | 

NADH 

NAD' 

COj 

Theoretical yield: 
1.00g {C.H„0,) 0.51g (C,H,OH) + 0.49g (CO,) 

Practical yield: 
1.00g {C,H„0.) 0.46g (C,H,OH) + 0.44g (CO,) + O.lOg (Biomass) 

Figure 1. Formation of ethanol from glucose by the Embden-Meyerhoff-Pamas 
Pathway (87). 

The bacterium Zymomonas mobilis employs the Entner-Doudroff pathway to 

form ethanol from glucose. Here as with the Embden-Meyerhoff-Pamas pathway, two 

moles of ethanol are formed from each mole of glucose utilized, but the Entner-

Doudroff pathway yields only one mole of ATP per mole of glucose compared to two 
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moles of ATP per mole of glucose from the Embden-Meyerhoff-Pamas pathway (Figure 

2). Due to interest in hemicellulose utilization, the formation of ethanol from pentoses 

is receiving attention. A number of yeasts, not of the genus Saccharomyces, can 

metabolize xylose through the Hetero-lactic Fermentation pathway (Figure 3) which 

utilizes the pentose phosphate pathway. 

D-Giucose 

Glucose 6-phosphate 

i 
Gluconate 6-phosphate 

t 
2-Keto, 3-deoxy-giuconate 6-phosphate 

t ^ 

rceraidehyde 3-phosphate Pyruvate 

I 
lycerate 1,3-diphosphate 

Acetaldehyde 

Giycerate 3-phosphate 

I 
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Figure 2. Formation of ethanol from glucose by the Entner-Duodoroff pathway (87). 
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Figure 3. Formation of ethanol and lactate from glucose and xylose by the heterolactic 
fermentation pathway (87). 
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High rate bacterial fermentations 

In addition to the improvements of the various process engineering parameters, 

research is also being directed to the use of microbes other than yeasts for ethanol 

production. A Gram negative bacterium Zymomonas mobilis has been shovm to have 

several advantages over yeasts in the production of ethanol, with higher ethanol yields 

and lower biomass production than yeasts (89). Unlike yeasts, Z. mobilis is capable of 

growing under complete anaerobic conditions, so that addition of oxygen in continuous 

fermentation is uimecessary. Z mobilis has significantly higher specific rates of glucose 

uptake and ethanol production when compared to yeasts (81). Techniques developed for 

the genetic manipulation of bacteria are being applied to improve the growth of this 

bacterium on sucrose, to extend the range of substrates which can be used for ethanol 

production, and to improve the ethanol tolerance of this bacterium (88, 25). 

Feedstocks used for ethanol production 

Sugars needed for the production of ethanol (glucose, sucrose, fructose) may be 

derived from three major classes of raw materials; sugar containing feedstocks, starchy 

feed materials and cellulosics. Most commonly, starch derived from com, and sucrose 

derived from sugarcane, are the major sources of feedstocks employed for ethanol 

production in the U.S. and Brazil, respectively. The use of other carbohydrate sources 

being evaluated for ethanol fermentation are lactose derived from whey, inulin-type 

poly-fructans derived from Jerusalem artichokes, and mono- and disaccharides (glucose, 

xylose, arabinose and cellobiose) derived from lignocellulosics. 
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Production of ethanol from whey 

Cheese whey, a major byproduct of cheese production, is highly polluting and 

constitutes a major waste-disposal problem for most manufacturers (20). Using free and 

immobilized cells of Kluyveromyces fragilis under batch conditions, Linko et al. (59) 

have successfully fermented demineralized whey containing 5 to 10% (w/v) lactose to 

ethanol in 48 h. A 90% conversion was achieved with both cell systems. Continuous 

production of ethanol was carried out by entrapping K. fragilis cells in calcium alginate 

beads packed in a vertical column bioreactor. At a dilution rate of 0.26 h"', and a 

lactose concentration of 5% (w/v), an effluent ethanol concentration of 2% (w/v) could 

be maintained for at least 31 days. However, at higher lactose levels the efficiency of 

the bioreactor declined due to the inability of the K. fragilis strain to tolerate high 

levels of ethanol. 

Since relatively few yeasts are capable of directly fermenting lactose to ethanol, 

the co-immobilization of P-galactosidase enzyme with S. cerevisiae cells has been 

attempted. Hahn-Hagerdal (38) covalently attached P-galactosidase to alginate. The 

alginate-enzyme complex was then co-entrapped with yeast in calcium alginate beads. 

Using a vertical packed-bed bioreactor, and a 4.5% (w/v) lactose feed in whey permeate, 

an ethanol concentration of up to 1.5% (w/v) was achieved for at least 20 days. 
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Production of ethanol from Jerusalem artichokes 

Growing energy crops on marginal land as an additional feedstock for ethanol 

production appears promising, as it will not threaten food supplies. One such 

carbohydrate-rich plant is Jerusalem artichoke {Helianthus tuberosus). This has a low 

fertilizer requirement, grows well on poor secondary land and is resistant to frost and 

plant diseases. Kluveromyces fragilis cells entrapped in calcium alginate beads were 

used for the repeated batch production of ethanol from extracts derived from Jerusalem 

artichokes. Margaritis and Bajpai (68) studied the continuous production of ethanol 

from Jerusalem artichoke extracts in a vertical packed-bed bioreactor containing alginate 

entrapped cells of K. marxianus. A maximum ethanol productivity of 56.8 g/l/h was 

achieved with an ethanol concentration of 65.3 g/1 by utilizing 83% of the available 

sugars. 

Production of ethanol from sweet sorghum 

Sweet sorghum {Sorghum bicolor) has the potential of becoming a useful energy 

crop. The primary advantages of sweet sorghum are its adaptability to diverse climatic 

and soil conditions and its reduced need for nitrogen fertilizer and water when compared 

to more conventional crops such as com (60). From the agronomic aspect, the use of 

crop rotation has been known to increase crop yields. Three-year crop rotation, such as 

com-soybean-wheat has shown to produce a better soybean yield. If the crop of the 

rotation were a non-grain crop such as sweet sorghum, world prices of grains, 

particularly com, would increase, adding income to farmers. Despite the advantages, 
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sweet sorghum is yet to become a viable alternative to com in fuel ethanol production. 

This is because most processes are based on separating and then fermenting the sugar 

fraction of the stalk. These processes are uneconomical, energy inefficient, or unproven 

on a commercial scale (32). 

Production of ethanol from cellulose and cellobiose 

Cellulose is the most abundant organic compound in the biosphere. It is a major 

constituent of plant material and is constantly being replenished by photosynthesis. The 

enzymatic saccharification and alcohol production from cellulose has been extensively 

studied. The enzymatic hydrolysis of cellulose is affected by the synergistic action of 

exo-cellulase, endo-cellulase and P-glucosidase. Cellobiose and glucose, the end 

products of cellulose saccharification inhibit the enzymic hydrolysis of cellulose. 

Attempts have been made to overcome the end-product inhibition of the cellulytic 

enzymes by simultaneous saccharification and fermentation. Hagerdahl and Maosbach 

(38) devised a procedure for the continuous production of ethanol from cellobiose by 

using P-glucosidase co-immobilized with baker's yeast cells. P-Glucosidase from sweet 

almonds was first covalently bound to the carboxy groups of sodium alginate. The 

alginate P-glucosidase complex was then mixed with the cells of S. cerevisiae and the 

mixture precipitated by calcium ions in the form of calcium alginate beads. These 

beads were then packed in small vertical column and cellobiose was fed continuously. 

The theoretical yield was reached after two days of operation but after two weeks of 

operation the system had only 10% of the maximum activity. 
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Immobilized cell systems 

Historically, microbial cells attached to surfaces have been exploited to perform 

several functions. Waste-water treatment, leaching of mineral ores, and production of 

high fructose com syrups are but a few examples of the existing processes (21). The 

production of ethanol from glucose, requires the sequential action of nine different 

enzymes in addition to the two coenzyme pairs, ATP/ADP and NADP/NAD. In order 

to achieve such a conversion, the constant regeneration of the coenzymes is essential. 

This can only be achieved if the immobilized cell is maintained in the viable state. 

Thus, although several techniques have been developed for the immobilization of cells, 

not all of these can be readily applied to fermentation systems requiring viable cells. It 

is therefore essential that any technique developed for immobilization of live cells must 

be mild enough to retain the viability of cells (55). 

Definition of immobilized cell systems 

Abbot (1), defined immobilized cells as any system in which microbial cells are 

confined within the bioreactor, thereby permitting their economical reuse. The term 

economical has been used to exclude processes in which cells are recovered and reused 

by employing techniques such as centrifugation and microfiltration. The following 

techniques of live cell immobilization have been used in ethanol production: 

1. Mechanical contairmient of cells in a bioreactor. 

2. Cell attachment to solid supports by electrostatic, ionic or covalent interactions. 

3. Physical entrapment of cells within polymeric matrices. 



www.manaraa.com

18 

4. Immobilization without inert supports (cell flocculation). 

Criteria for selecting a cell immobilization method 

In selecting a suitable technique for live cell immobilization, the following 

criteria must be considered (64): 

1. The method of immobilization is mild enough to ensure cofactor regeneration 

capability. 

2. The process is capable of regeneration following deactivation which may occur 

after long-term operation. 

3. The immobilization technique is such that high biomass concentrations can be 

achieved within the bioreactor and retained at that level for an extended period 

of time. 

4. The immobilization method is simple and inexpensive. 

5. The immobilized cell is stable at the operating pH and temperature. 

Advantages of immobilized cell systems 

Immobilized cell systems confer desirable properties to a biological process 

which are not achieved in conventional batch and continuous fermentation systems. 

Although the advantages depend specifically on the method of immobilization, some 

generalizations can be made. These include: 

1. High cell concentrations and therefore higher reaction rates. 

2. Higher dilution rates are achieved without cell washout. 
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Less susceptible to the effects of inhibitory compounds. 

The combined effect of high cell density and operation at high dilution rates 

reduce risk of reactor shut-down due to microbial contamination. 

The important characteristics of an immobilized cell system and/or support are listed in 

Table 4. 

Ethanol production using immobilized cell systems 

The continuous production of ethanol was first described by Delbruck in 1892 

(29) and subsequently by Barbaret in 1899 (7). These systems were, however, 

impractical owing to their primitive vessel design and construction, and the failure to 

guard these processes against microbial contamination. Nevertheless, these early 

methods established the fact that the maintenance of high cell densities was essential to 

achieve rapid fermentation (78). In most cases, the advantages and limitations of a given 

bioreactor system depend on the method of immobilization and the reactor configuration 

used. 

Ethanol production using mechanically-contained cell systems 

In 1892, Delbruck (29) described a system employing a porous cylinder within 

which a yeast was maintained. The use of such a filter was intended to restrict the loss 

of cells from the vessel, enabling the accumulation of yeast cells to a high 

concentration, in order to achieve rapid fermentation. 

3. 

4. 
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Table 4. Characteristics of immobilized cell systems (65) 

A. Immobilization method 
1. Entrapment within matrices 
2. Attachment to solid support by adsorption or covalent bonding 
4. Microencapsulation within polymeric membranes 
5. Immobilization without inert supports (flocculation) 

B. Microbiological characteristics 
1. Cell viability and fimction 
2. Cell growth rate and yield 
3. Metabolic products and yields 
4. Cell wall and membrane permeability 
5. Cell concentration 
6. Respiration requirements 

C. Chemical characteristics of the matrix 
1. Chemical composition and method of synthesis 
2. Functional groups, monomers types 
3. Possible toxicity to cell function and viability 

D. Physical characteristics of the matrix 
1. pH and temperature stability 
2. Solubility characteristics in aqueous solutions 
3. Porosity characteristics 
4. Oxygen transfer characteristics for aerobic system 
5. Geometry and size of the matrix 
6. Mechanical strength of the matrix 
7. Specific gravity and fluidization velocity 

E. Stability characteristics of the cell matrix system 
1. Activity and half-life in continuous operation 
2. Operational stability in a given bioreactor system 
3. Possible stabilization of the cell enzymatic system 
4. Stability and activity preservation during storage 

Plug-flow fermentors consisting of a mixture of yeast and kieselguhr (Celite 545) 

held between two filters were used for the production of beer (6). The plug-flow 

fermentors can operate at fermentation rates several times higher than the simple batch 

systems. They do, however, suffer from plugging problems, and the need to constantly 
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regenerate the yeast cells under aerobic conditions, which will interrupt sustained 

industrial operation. Furthermore, high pressure is needed to force the medium through 

the system. 

High cell densities may also be maintained within dialysis bioreactors. This 

bioreactor uses a dialysis membrane which separates the fermentation zone from the 

nutrient reservoir. Thus, the nutrients diffuse through the dialysis membrane into the 

fermentation zone and the product diffuses back into the nutrient zone, where it is 

recovered in an overflow (82). A limitation of the simple continuous dialysis bioreactor 

is the gradual fouling of the membrane and the inherently slow process of diffusion 

through the limited surface area of the dialysis membrane. These problems have been 

overcome by pressure dialysis, as in the Rotorfermentor (66). In a small scale pilot 

plant of the Rotorfermentor employing cells of S. cerevisiae ATCC 4126, almost 

complete utilization of glucose was possible at a feed concentration of 104 g/1. 

Although the Rotorfermentor appears to be attractive in terms of productivity, it is 

mechanically complex and difficult to operate. If periodic replacement of the membrane 

is necessary, then this will interrupt the continuous production when operating on an 

industrial scale. 

Cell densities of 155 g/1 and productivities of 70 g/l/h have been reported when 

fermenting glucose to ethanol. Hollow fiber bioreactors, however, are complex and 

costly. Carbon dioxide venting and membrane plugging may be encountered. These 

reactors, therefore, may not be important for the industrial production of ethanol (67). 
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Ethanol production using attached cell systems 

The attachment of microbial cells onto solid supports may be accomplished by 

two different methods: 

1. Attachment of cells to a support by electrostatic interactions. 

2. Attachment of cells to a support by either covalent bonding or by using cross-linking 

agents. 

Adsorption of cells to solid supports 

Any surface in contact with a nutrient medium which contains suspended 

microorganisms will, in time, become biologically active due to cell adhesion. This 

iimate ability of most microorganisms has been exploited as a useful cell immobilization 

technique (5). Although the mechanisms of these support-cell interactions are not fully 

elucidated, it is believed that they occur as a result of the charged nature of the 

microbial cell wall. 

When operating at high dilution rates using an adsorbed cell system, the resulting 

high fluid flow rates may very easily detach cells from the solid support, causing 

washout. (72). It is therefore desirable that in addition to retaining a high cell density, 

the support material must have a high affinity for the microbial cells. 

Moo-Young et al. (70) reported that yeast cells immobilized on wooden chips 

had 100% retention of cells even after the vertical packed-bed reactor was operated 

continuously for 30 days. Gencer and Muthurasan (34) also reported high retention of 

yeast cells by wood chips. 
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Experiments with S. cerevisiae have shown that macroporous material adsorbs 

the organism more than the non porous borosilicate glass (69). These workers have also 

studied the effect of various pore diameters on cell accumulation. They observed that to 

allow the passage and immobilization of yeast, the pore size must be approximately four 

times the maximum diameter of the yeast cell employed. 

A variety of supports have been utilized for the adsorption of yeast and bacterial 

cells for the continuous production of ethanol. Organic supports such as carrageenan 

gels (45), alginate in a three-stage reactor (52), ion exchange resins (53) and calcium 

alginate (2) were used for fuel-grade ethanol production. Inorganic supports such as 

vermiculite (9), and y-alumina (54) were also used for immobilization of cells for 

ethanol production. Use of cells immobilized in solid gel matrices as beads has been 

studied in packed beds and in fluidized bed reactors (99). 

Ghose and Bandyopadhay (35) reported that the ethanol productivity with an 

immobilized cell bioreactor was seven times higher than that obtained in a free cell 

system. Tyagi and Ghose (93) adsorbed cells of S. cerevisiae NRRL-Y-132 on to an 

unspecified inert support and used cane molasses as feed. The reducing sugars content 

was 150 g/1 when operated at a dilution rate of 0.375 h"'. The system achieved an 

ethanol productivity of 28.6 g/l/h with 96% of the sugars being utilized. Ethanol 

productivities as high as 132 g/l/h were reported with Z mobilis cells adsorbed to 

circular disks of borosilicate glass-fiber-pads packed in a vertical column bioreactor (3, 

4). However, vertical packed bioreactors are associated with different levels of CO, gas 

hold-up which results in poor heat and mass transfer properties, reduced bioreactor 
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efficiencies and high pressure drops along the length of the bioreactor. In order to 

alleviate these problems, fluidized and horizontal column bioreactors have been 

employed (64). 

Bland and co-workers (9) used an attached film expanded-bed bioreactor to 

facilitate mass transfer and reduce COj hold-up in the bioreactor. Cells of Z mobilis 

were adsorbed onto vermiculite particles. A maximum ethanol productivity of 105 g/l/h 

was achieved at a dilution rate of 3.6 h"'. Under these conditions, only 64.2% of the 

substrate was consumed. A period of 24 h was required to achieve a steady-state 

condition and adequate adsorption of the cells to the support particles. An attached film 

expanded bed (AFEB) bioreactor has also been utilized for the production of ethanol 

from cheese whey using adsorbed cells of Saccharomyces fragi. 

The adsorbed cell system is limited by two major constraints. First, the amount 

of biomass that can be adsorbed by a unit gram of the carrier is limited by the surface 

area of the support particle. Second, the operational stability of the bioreactor system is 

restricted by the rate of desorption of cells fi-om the support. This problem is especially 

severe when changes in pH or ionic strength occur, or when cells are sheared from the 

carrier surface by virtue of rapid flow and high turbulence created by COj bubbles. 

Attachment by covalent bonding and cross-linking agents 

This method of immobilization is based on a covalent bond formation between 

an activated support and cells. This requires the use of a cross-linking agent. However, 

due to the toxicity of most of the reagents used, covalent binding of cells to a carrier is 
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not frequently employed. The preservation of the cell viability is of utmost importance 

in ethanol fermentation. This technique, however, does have the advantage that the cells 

are linked to a uniform surface by bonds which are stable for long periods, so that cell 

leakage from the bioreactor is minimized. 

It is well known that cell membranes of microorganisms consist of 

polysaccharides, protein-lipid complexes and teichoic acids. Glutaraldehyde, a common 

cross-linking agent, has been known to react readily with the protein present in the 

lipid-bilayer of cell membranes. By adsorbing gelatin to an inert support, a reactive 

base for glutaraldehyde is provided. This allows a covalent link to be formed between 

the microbial cells and the gelatin support. Sitton et al. (82) employed a method where 

gelatin (25% w/v) coated Raschig rings were sprayed with a 3% (w/v) glutaraldehyde 

solution and dried for 24 h. Actively growing cells of S. cerevisiae were attached to the 

gelatin coated rings by circulating a cell suspension through a vertical packed bed 

column. Severe channelling due to COj hold up and cell overgrowth occurred. 

Ethanol production using entrapped cell systems 

Cell immobilization by entrapment occurs with the inclusion of cells within a 

rigid polymeric matrix. In immobilization techniques, entrapment includes both 

enclosure of a catalyst behind a membrane and within a gel structure. Carrier binding 

includes all methods where there is a direct binding of cells to water-insoluble carriers 

by physical adsorption or by ionic and/or covalent bonds. Potential mass transfer 

limitations are always present with an entrapment system, either across the gel matrix or 
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gel occlusion, or across the system membrane in membrane reactors. On the other 

hand, the carrier binding method allows direct contact between the fermentation medium 

and the biocatalyst, and the mediiun flows in and out of the system without restriction, 

thus minimizing mass transfer problems. In gel entrapment system the most active cells 

are at the gel surface, and agitation of the beads leads to loss of activity due to leakage 

of the outer layer. Gel entrapment systems often require a continuous supply of 

chemicals to maintain the hardness of the beads. 

Alginate entrapped cell systems 

Alginate is a glycuronan consisting of residues of D-marmuronic acid and L-

glucuronic acid arranged in a blockwise fashion along a polymer chain (41). In the 

presence of multivalent cations gel formation occurs. The immobilization is attractive 

primarily because of its simplicity. It is achieved by dropping a mixture of sodium 

alginate solution and cell suspension into a calcium chloride solution. Furthermore, the 

immobilization reagents are of low cost, making the procedure feasible for large scale 

applications. The porosity and diffusion properties of sodium alginate pellets have been 

known to be influenced by the concentration and type of sodium alginate and calcium 

chloride used (12, 50). 

In order to facilitate the retrieval of immobilized cells from batch and fed batch 

systems, the use of magnetically immobilized cells has been employed by Birnbaum and 

coworkers (8). They observed that small beads (1-mm diameter) were more 

metabolically efficient than larger beads (3-mm diameter), indicating that the mass 
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transfer limitation within larger beads reduced the fermentation rate. 

Cho et al. (18) compared the performance of a fluidized bed bioreactor and a 

vertical packed bed bioreactor, both employing alginate-entrapped yeast cells as a 

biocatalyst. Using a 10% (w/v) glucose feed, the ethanol productivity of a fluidized-bed 

bioreactor (FBBR) was 21.2 g/l/h, and that of the vertical packed-bed bioreactor was 

10.0 g/l/h. The superior performance of the FBBR was attributed to the absence of CO2 

hold-up. 

McGhee (71) investigated the production of ethanol from glucose by calcium 

alginate entrapped yeast cells that were 24, 48, 72 and 96 h cultures. They observed 

that the older yeast cells were much more efficient than the younger cells. 

A volumetric productivity of 14.90 to 17.41 g/l/h with 87 to 97% conversion was 

obtained in a multistage fluidized-bed bioreactor. This bioreactor alleviated the 

problems associated with CO2 evolution. Tzeng and Fan (94) reported a specific 

ethanol productivity of 18.37 g/l/h by using immobilized yeast cells in a multistage 

fluidized-bed reactor. 

A major disadvantage of calcium alginate as an immobilization support is that 

moderate concentrations of calcium chelating agents and certain cations such as 

phosphates, EDTA, Mg"^^ and disrupt the gel by solubilizing the calcium (12). 

Several other materials for improving the physical and chemical stability of the calcium 

alginate gel have been described. The use of divalent cations other than calcium as gel 

inducing agents has been suggested. Paul and Vignais (76) demonstrated that Sr^"^ and 

Ba^"^ produced gels of greater mechanical and chemical stability than Ca^"^. 
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x-Carrageenan entrapped cell systems 

K-Carrageenan is a polysaccharide isolated from seaweeds and is composed of 

unit structures of P-D-galactose sulfate and 3,6-anhydro-a-D-galactose. K-Carrageenan 

can be easily induced into gel formation by contact with a solution containing a number 

of gel-inducing agents such as metal ions, amines and water-miscible organic solvents. 

Greater stability has been achieved by further treatment with hardening agents such as 

glutaraldehyde, polyacrylamide and hexamethylenediamine (91). 

The growth of a Saccharomyces spp. entrapped in K-carrageenan has been studied 

by Wada and co-workers (96). They observed that the immobilized growing cell system 

had enlarged colonies assembled near the gel surface upon incubation in a nutrient 

medium. Using a horizontally packed-bed bioreactor with cells of Zmobilis 

immobilized in K-Carrageenan, an ethanol productivity of 101 g/l/h has been achieved 

with a glucose concentration of 108 g/1 (65) . 

Entrapment of cells within other polymeric matrices 

Cell entrapment in polyacrylamide involves the polymerization of an aqueous 

solution of acrylamide monomers in which microorganisms are suspended. The porosity 

of the gel is a function of the degree of cross-linking, which in turn depends on the 

relative amounts of the acrylamide monomer and the bi-functional cross-linking agent 

used (44). Due to the toxicity of the acrylamide monomer, the temperature used for the 

polymerization process, the duration of cell contact with the monomers, and the time 

required for gel formation, all dictate whether the cell viability is retained or not. Siess 
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and Divies (85) observed that the polymerization process may destroy 40 to 80% of the 

cells depending on the physiological state. The production of ethanol using cells of S. 

cerevisiae entrapped in polyacrylamide gel has been studied by Shiotani and Yamane 

(84). 

The enzyme activity and cellular integrity may be readily impaired due to the 

denaturing effects of polyacrylamide. Polymerization is also hindered when high 

biomass loading is used. Polyacrylamide gel pellets are usually of irregular shapes and 

sizes and in columns these pack irregularly, causing uneven flow and the development 

of relatively high, flow-induced pressure drops. 

Limitations of entrapped cell systems 

Entrapped cell systems are subjected to mass transfer limitations imposed by the 

diffusion barrier created by the support matrix. High levels of ethanol may accumulate 

within the gel and therefore reduce the efficiency of the system. In ethanol fermentation 

systems, COj is also a major product. The gas produced has relatively low solubility in 

aqueous media and therefore the diffusion of COj out of the matrix is rate limiting. The 

accumulation of the gas in the matrix causes gel disruption, and also adversely affects 

the metabolism of the entrapped cells (64). Table 5 lists a summary of immobilized cell 

used for ethanol fermentation. 
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Table 5. Summary of immobilized cell ethanol fermentation 

Microorganism Substrate Ethanol Cone./ 
Productivity 

Type of reactor/ 
Special technique 

Ref 

Saccharomyces 
cerevisiae 

Glucose 125 g/1 after 5 h Hollow porous 
alumina containing gel 
immobilized cells 

93 

Saccharomyces 
cerevisiae 

Sweet sorghum 
juice 

7.3-9.7 % yield Sugar conversion 
efficiency reached up 
to 90% 

63 

Saccharomyces 
cerevisiae 

Sugar cane 
juice 

135 g/1 in 8 h On line removal of 
toxic end products by 
high alcohols & 
activated carbon 

99 

Saccharomyces 
cerevisiae 

Sugar cane 
water 
suspension 

42-53 g/1 Simultaneous 
extraction and 
fermentation 

81 

Saccharomyces 
uvarum 

Non aseptic 
cane molasses 

6.2 g/l/h Continuous stirred tank 
reactor with five stage 
system for substrate 
recirculation 

13 

Zymomonas 
mobilis 

Glucose 13 g/l/h Batch vertical rotating 
immobilized cell 
reactor 

2 

Zymomonas 
mobilis 

Glucose 63 g/l/h Continuous vertical 
rotating immobilized 
cell reactor 

2 

Zymomonas 
mobilis 

Glucose 42-46 g/l/h Cell reactor separators 
with trickle flow 
operation and 
sponge as packing 

57 

Zymomonas 
mobilis 

Sucrose 92 g/I/h Sugar conversion 
efficiency of 60% with 
10% sucrose feed. 
Culture isolated from 
sugarcane juice 

80 
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Ethanol production using flocculated cell systems 

• The flocculant nature of certain yeasts and Z mobilis cells has been used as a 

means of maintaining a high cell population within a bioreactor without the need for 

added materials to support film growth and retain cells (1, 13, 31). 

Various continuous fermentation bioreactor configurations have been applied for 

production of ethanol using flocculant cells. These include stirred-tank fermentors, slant 

tubes, vertical packed columns and tower fermentors. However all these have some 

features that restrict their application. They can be operated only within a narrow range 

of dilution rates to avoid cell washout. Reactor packing can inhibit flow. Floe break 

and flotation of cells occurs due to gas release. 

Types of bioreactors used for ethanol fermentation 

Batch fermentation 

In 1984, up to 75% of ethanol from fermentation was produced in batch 

processes. In this process, a large volume of the substrate (10 to 15% [w/v] of sugar 

supplemented with nutrients) is fed to a fermentor and inoculated with a 5 to 10% 

inoculum of actively growing yeast. Yeast growth and alcohol production are allowed 

to proceed until maximum yields are obtained. At this point, the reaction mixture is 

placed into a holding tank, the fermentor cleaned and sterilized and a new batch started. 

Thus, in a batch fermentation, the lag and log growth phases of the yeast represent a 

major drawback to more rapid fermentation, and the downtime associated with the 
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emptying, cleaning and refilling of the fermentor also contribute to the overall low 

ethanol productivity. 

Batch fermentor 

The batch fermentor consists of a closed vessel, flask or a continuously stirred 

tank reactor (CSTR) containing a suitable growth medium and operated under optimum 

conditions of temperature, pH and dissolved oxygen. The reactor is inoculated with a 

starter culture and the cells allowed to grow until some essential component of the 

medium is exhausted or the environment changes due to the accumulation of a toxic 

product or change in pH. The reactor is equipped with a pH controller, foam controller, 

agitation and gas sparging devices (Figure. 4). The production of an end product and 

the changes caused in the environment of the fermentor limits the growth of the 

microorganisms. Therefore, continual removal of the end product and addition of new 

medium to the fermentor will improve product formation rates, improve yields, and 

decrease the capital and operating costs. In a batch fermentation, cell growth and 

ethanol production is continued until maximum yields have been obtained. 

Continuous fermentation 

Substantial improvements over traditional batch processes result when the 

fermentation is made continuous. Continuous systems, with their attendant preparation 

and product separation equipment, are generally smaller than those used in equivalent 

batch systems, and therefore, result in lower capital costs. 
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Figure 4. Schematic diagram of a batch type fennentor (21). 
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In a continuous fermentor the microbial population is maintained in a continuous 

state of balanced growth by continuously removing some of the culture medium and 

cells and replacing them with a fresh medium at the same rate. There are two types of 

continuous culture systems: 

1. the chemostat, which operates by supplying an essential growth-limiting nutrient 

at a constant rate with the bioreactor working volume being controlled by a spill

over spout, 

2. the turbidostat, which is operated by maintaining a constant cell density by 

constantly measuring the optical density and by supplying fresh medium as 

required. The bioreactor volume is kept constant by placing the whole reactor on 

load cells and by maintaining a constant reactor weight by controlling the outlet 

pumping rate. 

All these systems require a method for controlling a constant bioreactor volume. 

This can be done by using an overflow tube at a constant height within the bioreactor 

vessel, so that as fresh medium is pumped into the bioreactor an equal volume of the 

culture enters an overflow tube and passes to the collection vessel. It is also possible to 

have a pump connected to the culture outlet, carefully maintaining the pumping rate 

equal to the medium inlet flow rate. These reactors are equipped with temperature, Ph 

and dissolved oxygen controllers. Higher productivities can be achieved by continuous 

fermentation, but cell wash-out may occur at high dilution rate. The dilution rate is 

defined as the volumetric flow rate (in and out) divided by the fermentor volume. 
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Higher ethanoi productivities can be achieved by employing a high concentration of 

yeast or bacterial cells within the bioreactor, with continuous removal of end product. 

The system needs to be well-mixed to avoid short-circuiting of feed between inlet and 

outlet. Therefore, continuously stirred tank reactors are required. 

Cysewski and Wilke (23), using an adapted yeast culture, achieved a cell density 

double that obtained in a batch culture and an ethanoi productivity of 6 g/l/h, which is 

about three times higher than that obtained in the batch culture. 

Two-stage continuous-flow bioreactor 

The performance of a continuous fermentation, however, is limited by ethanoi 

inhibition. In order to obtain higher ethanoi concentrations with reduced product 

inhibition, multistage continuous fermentation is employed. Ghose and Tyagi (36), 

obtained final ethanoi concentrations of 80 g/1 using a two-stage CSTR wdth ethanoi 

productivities two to three times greater than that of a single-stage continuous flow 

CSTR. The CSTR does, however, have definite productivity limitations which depend 

on the growth characteristics of the organism. For instance, in a single-stage continuous 

flow bioreactor at steady state, the specific growth rate (|i) equals the dilution rate of 

the system. At dilution rates exceeding the maximum specific growth rate (|imax)> the 

culture washes out of the fermentor. 

A two-stage, continuous-flow bioreactor, containing both immobilized and 

suspended free yeast cells was developed by Gil et al. (33) (Figure. 5). A ceramic-like 

matrix material was used as the support for cell attachment or biofilm formation. The 



www.manaraa.com

36 

immobilization was performed by circulating the yeast slurry through the support 

material for 10 h. Using a synthetic sugar cane juice supplemented with mineral salts, 

yeast extract, peptone and aeration combined with a liquid recycle ratio of 20:1 within 

each reactor stage, the highest ethanol productivity of 28.5 g/l/h was obtained at a 

dilution rate of 0.25 h"' with 82% of the sugar consimied. This system was operated for 

two years. High test molasses (commercially concentrated, natural sugarcane juice) was 

an acceptable feedstock only when supplemented with ammonium salts. 

The performance of continuous fermentation is limited by ethanol inhibition. In 

order to obtain higher ethanol concentrations with reduced product inhibition, the use of 

CSTRS arranged in series has been suggested. An ethanol concentration of 80 g/1 was 

obtained by using a two-stage CSTR with ethanol productivities two to three times 

greater than that of a single-stage CSTR. 

Multi-stage continuous stirred tank reactor 

In a single-stage CSTR the high ethanol concentration in the reactor reduced the 

rates of yeast growth and product formation. A multi-stage, multi-feeding CSTR system 

for continuous fermentation of cane molasses to ethanol was developed by Chen (14). 

The productivities obtained from a three-stage (5.4 g/l/h) and a five-stage (6.2 g/l/h) 

system were significantly higher than from a single-stage (4.6 g/l/h) system. When the 

five-stage system was scaled up to a 1,000 times in a pilot-plant, the effluent ethanol 

concentration and overall volumetric productivity were 8.5% (v/v) and 5.3 g/l/h, 

respectively. This system (Figure. 6) was operated for fermentation of non-aseptic cane molasses. 
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Figure 5. Schematic diagram of two-stage immobilized cell bioreactor for continuous 
ethanol production (53). 

1. Reactor stage one 
4. Immobilization matrix 
7. Effluent reservoir 
10. Nutrient reservoir 
13. Nitrogen cylinder 

2. Reactor stage two 
5. Sintered glass filter 
8. Recycle line 
11. pH meter 
14. Gas flow meter 

3. Surge tank 
6. Sugar feed reservoir 
9. Magnetic stirrer 
12. Air cylinder 
15. Water jacket 
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Continuous fermentation with cell recycle 

Continuously stirred tank reactors with recycle 

In this system, ceils released in the product stream are collected by centrifugation 

or filtration and reintroduced into the fermentor. This permits the fermentor to operate 

at higher dilution rates and, therefore, increases ethanol productivities. The use of the 

centrifuge for cell separation does, however, increase the capital cost, requires 

considerable maintenance, added supervision, elevated energy requirements, and is 

associated with an increased risk of contamination. Ethanol productivities of 30-40 g/l/h 

have been obtained (23). 
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Figure 6. Schemtaic diagram of a multistage CSTR (14). 
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Membrane recycle fermentor 

A membrane recycle bioreactor for ethanol production from sulfuric acid treated 

whey permeate was designed by Tin and Mawson (90) (Figure 7). The fermentation 

broth was recycled through a ceraflo ceramic membrane filter (MF) (pore size 0.45, 25 

|im and total filter area of 0.1 m*) membrane at 0.5 m^h•'. The highest ethanol 

productivity of 13.7 g/l/h was observed with a D = 1.3 h"' with only 46% of the lactose 

in the feed being utilized. 
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Figure 7. Schematic diagram of a membrane recycle fermentor (90). 
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Tower fermentor 

The concept of continuous tower fermentation was developed for the brewing 

industry in Britain in the mid 1960's. Some yeasts naturally aggregate into flocs, which 

allow them to settle against an upflow of fluid. By incorporating a settling zone within 

the fermentor, free of turbulence caused by the evolving COj, it is possible to retain 

yeasts in the fermentor simply and easily achieve high cell densities. With 120 g/1 

glucose in the feed, a 100% conversion was reached with a productivity of 13.9 g/l/h 

with a residence time of 4 hours in a tower fermentor constructed with 7.5 cm internal 

diameter and a height to diameter ratio of 22:1 (78) (Figure 8). 
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Figure 8. Schematic diagram of a tower fermentor (78). 



www.manaraa.com

41 

Immobilized column reactor without support material 

Schizosaccharomyces pombe, a naturally flocculating yeast, was cultivated in a 

column reactor to be used for continuous ethanol production by Hsiao and co-workers 

(40). An ethanol productivity of 87 g/l/h was reported with a feed of 150 g/1 of glucose. 

Yeast floes underwent morphological changes to heavy particles of 0.1-0.3 cm in 

diameter and the reactor was reported to be stable over a two-month period. 

Continuous fermentation with cell recovery 

Hollow fiber fermentor 

A tubular bioreactor with continuous strands of hydrophobic microporous hollow 

fibers with extracting solvent flowing in a fiber lumen was used for yeast fermentation 

of glucose to ethanol. Yeast was immobilized on the shell side of the hollow fibers. 

The solvent extraction was carried out by two solvents (oleyl alcohol and dibutyl 

phthalate). The outlet glucose concentration decreased with an increase in 

solvent/substrate flow ratio. This effect of insitu extraction was stronger with oleyl 

alcohol than with dibutyl phthalate. (48). 

Continuous dynamic immobilized biocatalyst bioreactor 

Chen and Wayman (16) have used a continuous dynamic immobilized biocatalyst 

bioreactor (CDIBB) by co-immobilizing yeast and cellulases on glass fibre discs (Figure 

9). The yeast was attached to glass fiber support by entrapment with sodium alginate 

and calcium chloride. The cellulase enzymes were precipitated on the surfaces of the 
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cells with tannin and glutaraldehyde. Cellulose, prepared from Aspen poplar (Populus 

tremuloides) by S02-catalyzed prehydrolysis was used as a feed. Saccharification and 

fermentation occurred simultaneously in the bioreactor. The shelf-life of the system was 

about two weeks, with yields averaging 90% for the first 8 days and decreasing to 40% 

thereafter over a five day period. 

Water 

Water 

Figure 9. Schematic diagram of a continuous dynamic immobilized biocatalyst 
bioreactor (16). 

1. Bioreactor 
4. Shaft 
7. Substrate reservoir 
10. Product reservoir 

2. Glass fibre discs 
5. Thermometer 
8. Magnetic stirrer 

3. Heat exchanger 
6. Motor 
9. Peristaltic pump 
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Fluidized bed fermentor 

Continuous ethanol fermentation using a fluidized-bed reactor was studied by 

Nguyen and Shieh (73). The bioreactor consisted of a glass tube partially filled with 

spherical glass beads to distribute the flow and to retain the microcarriers containing the 

yeast. A peristaltic pump recycled the flow from the reactor into a container where the 

pH and other environmental conditions were monitored (Figure 10). Growth on the 

pH control 
CO2 Temperature control—— 

N\\̂  
Refrigeration 

Effiuent 

Sampling 
port 

Magnetic stirrer 
Fluidizer 
microcarrier 
bed 

^Sampling 
port 

Recycle 
flow 

Glass beads 

<E> 

Figure 10. Schematic diagram of a fluidized bed fermentor (73). 
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celite R-633 microcarriers was established by adding a concentrated yeast culture to the 

reactor and operating it in a recycle mode for 14 days. After 2 weeks, continuous 

fermentations were started and performed at different dilution rates. The system 

reached a steady state in 72 days. The highest ethanol yield of 0.36% was obtained at a 

dilution rate of 0.15 h"'. The average rate of ethanol production peaked between 0.11 

and 0.14 h"'. The system was operated for more than 226 days. It was not sterilized 

before the start of fermentation but it was disinfected with soap solution and hot water. 

Multistage fluidized bed bioreactor 

Tzeng and Fan (94) built a multistage fluidized bed by using Saccharomyces 

carlbergenesis cells immobilized in sodium alginate beads (Figure 11). After gelation, 

the calcium alginate beads were treated in 1% triethylene tetramine for 1 h and in 1% 

glutaraldehyde for 4 min. These treatments improved the mechanical strength of the 

alginate beads and prevented the precipitation of calcium ions in the alginate matrix. 

The different stages of the fluidized bed reactor were separated by placing a 100 mesh 

sieve in the reactor. The volumetric productivities ranged from 14.90 to 17.41 g/l/h 

with 87 to 97% conversion, respectively. The outlet ethanol concentrations ranged from 

66.8 to 93.3 g/1 depending on the number of stages of the bioreactor. 
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Figure 11. Schemtaic diagram of a multistage fluidized bed fermentor (94). 
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Solid substrate fermentation 

Solid-phase fermentation 

A semi-continuous solid-phase fennentation system was developed by Gibbons 

and coworkers (32) to produce fuel ethanol from sweet sorghum. In this process, dried 

and shredded sweet sorghum was rehydrated to 70% moisture, acidified to Ph 2.0 to 3.0, 

and inoculated with a spray of yeast culture. An optional pasteurization step (12 h at 70 

to 80°C) was included prior to the inoculation step. The entire pulp, inoculated with the 

culture, was fed into an auger. Repeated batches of pulp inoculated with yeast were 

added to the fermentor and after 72 h of retention time the first batch of pulp added to 

the fermentor contained approximately 6% (v/v) ethanol. Due to the length of the auger 

and the slow rate of rotation, the pulp did not exit from the fermentor for 72 h, 

permitting complete fermentation of the available sugars. A similar model of solid-

phase fermentation for production of ethanol and distiller's wet feed from fodder beets 

was designed by Gibbons et al. (32). The fermentation time of 24 h was sufficient to 

completely ferment the beat pulp into 8-9% ethanol (v/v). Based on the resuUs of this 

study they proposed a model plant for continuous process for converting fodder beets 

into ethanol (Figure 12). 

Extractive fermentation 

Extractive fermentation is a process in which the fermentation and product 

recovery are integrated into a single step to overcome end product inhibition. An inert 

and biocompatible organic solvent such as oleyl alcohol and polypropylene glycol is 
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introduced into the fermentor to selectively extract ethanol. The ethanol is recovered 

from the solvent by means of flash evaporation, and the solvent is recycled to the 

fermentor. The distinguishing feature of the extractive fermentation process is the 

solvent regeneration and ethanol recovery. The ethanol-laden solvent leaving the 

fermentation vessel is sent to a flash vaporization unit, where, in a single equilibrium 

stage, a highly concentrated ethanol-in-water product (60-70% [w^/v] ethanol) is 

obtained. The product stream is then sent to a distillation unit, wfhile solvent having a 

considerably reduced ethanol content (> 85% removed) is returned to the fermentor after 

cooling (Figure 13). A feed concentration of 18% (w/v) fermentables and a dilution 

rate of 0.20 h"' was found to provide the lowest ethanol production cost with an ethanol 

productivity of 16.3 g/l/h and a concentration of 82.0 g/1 (27). 
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Figure 12. Schematic diagram of a plant for continuous solid-phase fermentation (32). 
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Figure 13. Schematic diagram for ethanol production using extractive fermentation (27). 

Membrane extractive fermentation 

Christen et al. (19) have developed a liquid membrane system for the extraction 

of ethanol during semicontinuous fermentation with Saccharomyces bayanus. The 

membrane consisted of a porous teflon sheet as support, soaked with isotridecanol for 

removal of ethanol (Figure 14). This system permitted combining biocompatibility, 

permeation efficiency and stability. The removal of ethanol from the fermentation broth 
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decreased inhibition, and resuhed m the conversion of 452 g/1 of glucose versus 293 g/1 

glucose without extraction. Membrane extraction resulted in 2.5 times increase in 

volumetric ethanol productivity. This process combined three operations: fermentation, 

extraction, and re-extraction (stripping the ethanol from solvent). 

Figure 14. Schematic diagram of an extractive fermentor (19). 

1. Fermentor 2. Permeation cell 3. Supported liquid membrane 
4. Extracted phase 5. Gaseous stripping phase 6. Cold trap 
7. Condensed permeate 

Vacuum fermentation 

The continuous removal of ethanol from the fermentation broth eliminates 

ethanol inhibition. This has been achieved by operating the fermentor under vacuum 

(Figure 15). Ethanol productivities of 82 g/l/h were obtained by Ramalingham et al. 

(79) using this vacuum fermentation. An added advantage of vacuum fermentation is 
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the production of a more concentrated ethanol stream, which reduces some distillation 

requirements, to produce 190 proof ethanol. A major constraint of vacuum 

fermentation, however, is the accumulation of the toxic, non-volatile components within 

the fermentor. To avoid yeast inhibition by non-volatile components, a medium bleed 

of the fermentor must be continuously withdrawn. The cell recycle and vacuum 

operation may increase the likelihood of microbial contamination. Furthermore, 

additional capital and operating costs for both systems and limited reliability makes 

these processes unsuitable for industrial scale operations. 
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Figure 15. Schematic diagram of a vacuum fermentor (79). 



www.manaraa.com

51 

Integrated fermentation unit 

Immobilized yeast reactor coupled with membrane pervaporation unit 

Pervaporation is an evaporation process utilizing a semi-permeable membrane 

through which the medium containing the solvent to be evaporated flows. The entire 

system, under vacuum, increases the recovery of the product. A system comprising of 

an immobilized yeast reactor producing ethanol, with a membrane pervaporation module 

for continuously removing and concentrating the produced ethanol, was developed by 

Shabtai and coworkers (Figure 16) (83). The yeasts were immobilized in a cross-linked 

polyacrylamide-hydrazide gel coated with calcium alginate and extruded as 5 mm beads. 

An ethanol productivity of 20 to 30 g/l/h was achieved in continuous operation (over 40 

days). Membrane fouling was prevented by short washing steps and by using two 

different modules that were interchanged in and out of the bioreactor. 

Biofilm bioreactors for ethanol production 

A biofilm reactor is a system in which growth takes place on an inert surface 

producing a film of microorganisms which is in direct contact with the surrounding 

medium and is immobilized (11). Not all microorganisms are film formers but nonfilm 

forming organisms are naturally entrapped or immobilized in the biofilms. In other 

words, biofilms are a natural mechanism for cell immobilization. Biofilm reactors 

present several advantages over entrapped systems. A culture is inoculated into the 

fermentor which contains specific inert supports and the cells are allowed to grow 

forming a biofilm on the support surfaces. This obviates the need to use special 



www.manaraa.com

52 

techniques to entrap cells into the matrices prior to use in the reactor. The biofilm is 

then maintained by the film former, requiring no special maintenance schedule for long 

term use. The combination of high conversion, high product concentrations and high 

productivity is essential to the economic production by fermentation. Use of biofilm 

reactors offers a combination of these factors. 

Figure 16. Schematic diagram of an immobilized yeast reactor coupled with 
pervaporation imit (83). 

A. Immobilized reactor B. Membrane pervaporation unit c. Product recovery unit 
I. Feed reservoir 3. Level controller 5. Liquid hold tank 
II.  Pressure relief device 13. Liquid nitrogen trap 14. Vacuum pump 
8,10,12. Heat exchangers 2,4,6,7,9. Pumps 15. Product reservoir 
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Biofilm reactors result in high cell densities, high productivities, reduced difflisional 

resistance, less inhibition and long operating time with little maintenance. 

Packed bed fermentor 

Saccharomyces cerevisiae cells immobilized in 3% K-carrageenan were used to 

build a packed-bed reactor for use in continuous ethanol fermentation. A tapered-

column reactor was used to offset the problem of pressure build-up and channelling 

caused by evolving COj and aeration was used. With a cell loading of more than 

40 g/1, an ethanol productivity of 21.1 g ethanol/1 gel/h was obtained. Feeding oxygen 

into the reactor improved the yield by supplying a cellular nutrient, by decreasing the 

interface mass-transfer resistance caused by micromixing, by redispersing the settled 

biomass, and by breaking the clusters of beads held together with the accumulating cells 

(37). 

Plug flow bioreactor 

Das and coworkers (26) have used lignocellulosic materials for whole cell 

immobilization in developing a vertical packed column reactor (Figure 17). Four 

different lignocellulosic materials (bagasse, sawdust, rice-husk and rice-straw) were used 

for immobilization of yeast cells. Immobilization was achieved by recirculating a 

concentrated cell suspension for 12 h. A maximum productivity of 17.4 g/l/h 

corresponding to a dilution rate of 0.39 h"' and ethanol concentration of 45.8 g/1 was 

reported with rice-straw as the solid matrix for immobilization. A decline in ethanol 
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productivity was reported after 22 days of continuous operation. Different types of 

reactor configurations were studied to overcome the disruption effect caused by the 

generation of the large volume of COj in the cylindrical column bioreactor. Increased 

productivities were obtained when reactors with rhomboidal and tapered column shapes 

were used. 

ess 

Figure 17. Schematic diagram of a vertical packed bed reactor (26) 

I. Medium reservoir 
4. Immobilized cell reactor 
6. Magnetic stirrer 
9. Sampling point 

2. Peristaltic pumps 
4.1 Thermometer 
7. Yeast cell reservoir 
10. Drain 

3. Valves 
5. CO2 vent 
8. Product reservoir 
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Packed-column reactor 

A packed-column reactor with yeast cells immobilized in calcium alginate gel 

was used to study the fermentation variables involved in continuous ethanol 

fermentation. A maximum ethanol concentration of 98 g/1 with a mean residence time 

of 3.8 h was reported. Under steady-state conditions ethanol productivity was 38 g/l/h. 

The performance of the packed bed reactor was considerably better than that of a CSTR. 

After 20 days of continuous fermentation, some deactivation of cells occurred, but 

ethanol productivity was recovered by reactivating the cells with nutrients. It was 

reported that initial activation as well as intermittent reactivations during the 

fermentation were very important to the satisfactory performance of the reactor system 

over a prolonged period (56). 

Rotating biological surface bioreactor 

A rotating biological surface (RBS) reactor, described as a trickling filter, was 

used for the continuous production of ethanol by Del Borghi and coworkers (Figure 18) 

(30). A synthetic commercial sponge was used to trap the yeast cells on the disks. 

Ethanol productivity of 7.1 g/l/h at a dilution rate of 0.3 h"' was reported in the RBS. 

This was 2.5 times greater than the maximum productivity obtained at a lower dilution 

rate in the RBS reactor without support. 
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Figure 18. Schematic diagram of a rotating biological surface bioreactor (30). 

1. Shaft stirrer 
5. Thermometer 
8. Pump 

2. Temperature regulator 3, 4. pH control and regulation 
6. Input 7. Output 
9. Nutrient reservoir 

Rotating fiber disc fermentor 

Continuous ethanol production from glucose, sucrose, cane molasses and com 

wet-milling waste by Saccharomyces cerevisiae and Pichia stiptis was reported by 

Parekh and Wayman (75). The cells were immobilized on rotating fiber discs by 

calcium alginate in a continuous dynamic immobilized cell bioreactor (CDIR). Glucose 



www.manaraa.com

57 

and sucrose at 56 g/1 was fermented in 1.6 h with about 90% substrate utilization. 

Waste water from a com wet-milling process with 115 g/1 sugars was completely 

fermented in 2.5 h by S. cerevisiae loaded at 56 g/1 cell density. Cane molasses 

containing 195 g/1 total sugars was fermented in 3.6 h with an ethanol productivity of 

23 g/l/h and a 90% substrate utilization. The estimated half life of the bioreactor was 

98 days (figure 19). 
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Figure 19. Schematic diagram of a rotating disc fermentor (75). 

1. Rotating fermentor 2. Motor 3. Condenser 
4. Thermometer 5. Feed reservoir 6. Product reservoir 
7. Pump 8. Stand 9. Central shaft 
10. Fiber discs 
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Rotary drum fermentor 

Ethanol production from sweet sorghum by solid-state fermentation (SSF) in a 

rotary-drum fermentor was reported by Kargi (49). This method involves chopping the 

sorghum pith into fine particles and then adding a concentrated yeast inoculum. 

Fermentation occurs on the surface of the sorghum particles, which can be regarded as a 

single, solid phase. A rotary drum offers an inexpensive means for mixing the 

fermenting sorghum, thereby ensuring homogeneity and effective heat transfer. To 

ensure anaerobic conditions in the fermentor the yeast inoculum was mixed with sodium 

sulfide. The rate of ethanol formation decreased with increasing rotational speed of the 

drum. The maximum rate and extent of ethanol formation was 3.1 g/l/h at 1 rpm 

rotational speed with a disc diameter of 22 cm and length of 15 cm. Kargi and Curme 

(49) have developed a rotary-drum fermentor for the solid-state fermentation of sweet 

sorghum to ethanol. They reported a maximum ethanol productivity of 3.1 g/l/h. 

Gibbons and co-workers (31) used a semi-continuous solid-phase fermentation for 

production of fuel ethanol form sweet sorghum. In this process dried and shredded 

sweet sorghum rehydrated to 70% moisture was fermented in 72 h, with ethanol yields 

of 176 to 179 liters per 1000 kg of dry sweet sorghum. 
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EVALUATION OF PLASTIC-COMPOSITE SUPPORTS FOR ENHANCED 
ETHANOL PRODUCTION IN BIOFILM REACTORS 

A paper to be submitted to the Journal of Industrial Microbiology 

Mahipal Reddy Kunduru' and Anthony L. Pometto 

Abstract 

Biofilms are a natural form of cell immobilization that result from microbial 

attachment to solid supports. Biofilm reactors with polypropylene composites 

containing up to 25% (w/w) of various agricultural materials (com hulls, cellulose, oat 

hulls, soybean hulls or starch) and micronutrients (soy bean flour or zein) were used for 

ethanol production. Plastic composite supports were prepared by a high temperature 

extrusion of polypropylene and agricultural material into 2-3 mm chips. Pure-cultures 

of Zymomonas mobilis (ATCC 31821) ox Saccharomyces cerevisiae (ATCC 24859) and 

mixed-cultures with either of the ethanol producing microorganism and the biofilm 

forming Streptomyces viridosporus T7A (ATCC 39115) were evaluated. Pure- and 

mixed-culture combinations were evaluated in continuous fermentation in glucose-yeast 

extract medium in a bioreactor with a 20 ml working volume, 50 ml plastic composite 

supports and dilution rates of 0.18 to 10.5 h"'. 

An ethanol productivity of 374 g/l/h with a 44% yield was obtained on 

' Graduate student and Associate Professor respectively, Department of Food Science and Human Nutrition and Center for 
Crops Utilization Research, Iowa State University. 
' Author for correspondence. 
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soybean hull-zein-polypropylene composite supports using Z mobilis in pure-culture 

with 10% glucose feed. The ethanol productivity obtained is the highest reported to 

date. With mixed-culture fermentations employing Z mobilis and S. viridosporus, an 

ethanol productivity of 147.5 g/l/h was obtained on com starch-soybean flour composite 

support. With pure-culture fermentation with S. cerevisiae, maximimi productivity of 40 

g/l/h with a 47% yield was obtained on soybean hull-soybean flour plastic composite 

support. Mixed-culture fermentation using S. cerevisiae and S. viridosporus resulted in 

ethanol productivity of 190 g/I/h with a 35% yield, when oat hull-polypropylene 

composite supports were used. The maximum productivities obtained in continuously 

stirred reactors without supports were 124 g/l/h and 5.4 g/l/h with Z mobilis and 

S. cerevisiae, respectively. These productivities are significantly lower than the 

productivities obtained vdth biofilm reactors using composite supports. Percent yields 

were generally lower with mixed-culture fermentations than those observed with pure-

culture fermentations. Biofilm formation on the chips was detected by the change in 

weight and Gram staining of the support material at the end of the fermentation. 

Ethanol production rate and concentrations were consistently higher in biofilm reactors 

than in suspension cultures. Biofilm reactors with pure culture of Z mobilis had higher 

ethanol productivity, whereas, biofilm reactors with mixed-cultures of S. cerevisiae and 

S. viridosporus resulted in higher productivities. Fermentations with S. cerevisiae 

resulted in lower productivities than fermentations with Z mobilis. 
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Introduction 

Ethanol is a primary alcohol that can be produced by chemical synthesis from 

petrochemical feedstocks and by microbial fermentation using renewable plant products. 

Ethanol is used as a motor fuel additive, most commonly in a blend with gasoline 

known as gasohol. The chemical industry uses ethanol as a feedstock and as a solvent. 

Ethanol can also be fermented to acetic acid, which is used as a food acidulant and as a 

road deicer as CMA (calcium-magnesium-acetate) (1). Ethanol is considered 

appropriate as a turbine fuel for peak load electric utilities requirements (30). In the 

U.S, more than half of the denatured alcohol is sold as solvent for nitrocellulose 

coatings, shellacs, inks, hydraulic fluids, liquid detergents, soaps, deodorants, perfumes, 

antiseptics and lotion. Undenatured ethanol is used by the cosmetic, pharmaceutical and 

food industries in the production of vitamins, flavors and essences, mouthwashes, blood 

products and fortified wines (14) and as growth substance for single cell production (9). 

Ethanol production costs by fermentation were less than $1.25 per gallon in 

1992, depending on the process used and feedstock costs (14). Raw materials are the 

major costs representing up to 70% of the final price (24). Conventionally, ethanol has 

been produced by batch fermentation, which has the drawbacks of large fermentor 

volume requirements, low productivity, difficulty in automation and high operating 

costs. To improve fermentation several techniques have been applied. These include 

vacuum fermentors (10), cell recycling (27), hollow fiber membrane reactors with 

recycling (7) and immobilization of cells (5, 8). Various immobilization procedures 

such as covalent coupling (including treatment with cross-linking agents), adsorption on 
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to solid inert carriers, and entrapment in semi-permeable inert supports such as 

hydrogels, fibers and membranes were used. Supports such as K-carrageenan gels (15), 

calcium alginate (18), ion exchange resins (20), vermiculite (4) and y-alumina (19) were 

used for cell immobilization. Viable cells immobilized in solid gel matrices (i.e. 

calcium alginate) as beads have been studied in packed bed (32) and fluidized bed 

reactors (25). However, these systems have relatively low efficiency, and find limited 

applications due to the diffusional resistance of substrate or product and rapid removal 

of CO2 from the reactor, in addition to decreased microbial viability for long term 

production of ethanol. Improving industrial fermentation productivity requires 

development of increased production rates with reduced fermentor volumes and 

decreased operating costs. 

Biofilms are a natural form of cell inmiobilization that resuhs from microbial 

attachment to solid supports (6). Biofilms have been used in waste water treatment 

plants (21), for production of vinegar by the "quick vinegar process", mineral ore 

treatment (9) and lactic acid production (12). This paper describes the use of biofilm 

reactors which use plastic composite supports for enhanced ethanol production. A 

three-fold increase in ethanol productivity was obtained in biofilm reactors containing 

plastic composite supports with Z mobilis as ethanol producer. Fermentations were 

performed with Z. mobilis or S. cerevisiae as the ethanol producers in pure-culture and 

with either of the ethanol producer and S. viridosporus as the biofilm former in mixed-

culture fermentations. 
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Materials and Methods 

Microorganisms and media. Zymomonas mobilis (ATCC 31821) was 

maintained in a medium containing 2% (w/v) glucose, 0.5% (w/v) yeast extract (Difco 

Laboratories, Detroit, MI), 0.2% (w/v) (NH4)2 SO4, 0.05% (w/v) MgSO^-THzO, 0.2% 

(w/v) KH2PO4 at 4°C and was subcultured every two weeks. Saccharomyces cerevisiae 

(ATCC 24859) was maintained on a medium containing 2% (w/v) glucose, 1.0% (w/v) 

yeast extract (Difco Laboratories) and 2% (w/v) peptone (Difco Laboratories) at 4°C 

and subcultured every 4-6 weeks. Biofilm former Streptomyces viridosporus T7A 

(ATCC 39115) was maintained on 0.6% yeast extract agar slants at 4°C for 3-6 weeks 

(22). 

For continuous fermentation the medium for Z. mobilis had 0.5% (w/v) yeast 

extract (Difco), 0.2% (w/v) (NH4)2S04, 0.05% (w/v) MgS04*7H20, and 0.2% (w/v) 

KH2PO4. A glucose concentration of 10 and 12% (w/v) was used for pure-and mixed-

culture fermentation, respectively. Medium used for yeast fermentations contained 0.6% 

(w/v) yeast extract (Difco), 0.023% (w/v) CaCl2*2H20, 0.1% (w/v) MgS04*7H20, 

0.15% (w/v) KH2PO4 and 0.4% (w/v) (NH4)2S04. The glucose concentration was 7.5 

and 10% with pure- and mixed-culture fermentations, respectively. The phosphate salts 

were autoclaved separately and then added to the medium aseptically before 

fermentation was started. 
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Support materials. Various plastic composite supports containing agricultural 

materials (25% w/w) were used as solid supports (Table 1). The plastic composite 

supports were prepared by high-temperature extrusion of the polypropylene (Quantum 

USI Division, Columbus, OH) and agricultural materials in a Brabender PL2000 

counter-rotating twin-screw extruder (C. W. Brabender Instruments, Inc., South 

Hackensack, N.J) by using the method of Demirci et al (12). The barrel temperatures 

were 200, 210 and 220°C, the die temperature was 220°C and the screw speed was 20 

rpm. The agricultural products used were cellulose (Sigma Chemical Co., St. Louis, 

MO), com starch (American Maize-Products Co., Cedar Rapids, I A), ground (20 mesh) 

oat hulls (National Oats Co., Cedar Rapids, lA), soybean flour (Archer Daniel Midland 

Co., Decatur, IL), ground (20 mesh) com hulls (Penford Products Co. Cedar Rapids, 

lA), and zein (Sigma Chemical). Each agricultiwal material was vacuum dried for 48 h 

at 110°C prior to being used for extrusion. Polypropylene pellets and specific 

agricultural blends were mixed for several minutes in a container and then added to the 

extruder hopper. Polypropylene was compounded with different levels and blends of 

agricultural materials. The melted polypropylene was imiformly mixed with agricultural 

product by the counter-rotating movement of the twin-screws and extruded as 3 mm 

diameter rods, air cooled and then cut into chips of 2-3 mm in length with a pelletizer. 

Polypropylene extruded with protein containing agricultural material was difficult to 

extrude and was charred by the high temperatures employed. 
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Evaluation of biofilm. Tlie biofilm formed on the support material was 

evaluated by weight change, by clumping after drying at 70°C overnight, and by gram 

staining the chips. After drying the supports the in a flask, were shaken vigorously to 

evaluate chip-clumping strength (13). Supports with good biofilm resisted separation, 

whereas supports without any biofilm formation separated easily. Gram staining was 

performed on supports after the fermentation and the resulting color development was 

compared visually with the color of uninoculated Gram stained supports. 

Continuous ethanol fermentation. Fermentation was carried out in 60 ml 

plastic syringes with an estimated working volume of 20 ml by using the method of 

Demirci et a/.(12) (Figure 1). A 9-liter carboy containing 4.5 to 6 liters of sterile 

medium was fed into the syringe at its needle port. A T-connector in the feed line was 

used to supply filter sterilized air for yeast and streptomycetes or nitrogen for bacterium. 

The wide mouth of the syringe was fitted with a silicone stopper that contained two 

glass tubes. One port was covered with a septum and used for inoculation, and the 

other was used as an exit line. The system contained liquid breaks in the feed and exit 

lines to prevent contamination of the medium reservoir and the reactors during sampling 

or during changing the medium for the mixed-culture fermentations. The syringe was 

filled with 50 ml (average weight of 18.65 g and density of 0.373 g/cc) of a plastic 

composite support and was clamped tightly with the silicone stopper at the wide mouth 

end, then sterilized by autoclaving at 12 PC for 30 minutes. Specific culture medium 

was sterilized by autoclaving at 121°C for 85 minutes and then aseptically connected to 



www.manaraa.com

66 

each reactor. For mixed-culture fermentation the reactors were inoculated with 1 ml of 

S. viridosporus spore suspension (-1.0 x 10' spores/ml). Each reactor was incubated in 

batch fermentation at 37°C for 24 h and then changed to continuous fermentation at a 

dilution rate of 0.18 h"' for 10 days to develop a biofilm. The medium was switched 

and the reactors inoculated with 1 ml of the ethanol producing bacterium or yeast and 

incubated at 30°C. A 24 h batch fermentation was followed by a continuous 

fermentation at various dilution rates (0.08, 0.36, 0.72, 1.44, 2.88, 5.76, 0.48, 0.96, 1.92, 

3.84, 7.68, 0.66, 1.32, 2.64, 5.28, 10.56 h"'). The fermentation was anaerobic when 

Z mobilis was the ethanol producer. Each dilution rate was maintained for 24 hours 

and samples were collected at 5-6 hour intervals. The control reactor contained 

polypropylene supports in pure- and mixed-culture fermentations and without supports 

in pure-culture fermentations. Reactors without supports with a working volume of 20 

ml contained a magnetic stir bar to prevent culture from settling at the bottom for the 

Z. mobilis fermentation. Each continuously stirred reactor (CSR) was suspended in a 

30°C water bath placed on a magnetic stir plate. 

Analysis of culture broth. The suspended cell density in the reactors was 

measured by absorbance at 620 nm using a Bausch and Lomb Spectronic 20 

spectrophotometer (Milton Roy, Rochester, NY). Percentage glucose and ethanol were 

measured by using a Waters High Pressure Liquid Chromatograph (Millipore 

Corporation, Milford, MA) equipped with a Waters Model 401 refractive index detector, 

column heater, autosampler and computer controller. The separation of ethanol, glucose 
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and other broth ingredients were done on a Bio-Rad Aminex HPX-8711 column (300 x 

7.8 mm) (Bio-Rad Chemical Division, Richmond, CA) using 0.012 N Sulfuric acid as a 

mobile phase at a flow rate of 0.8 ml/min with a 20 fil injection volume and a column 

temperature of 65°C. 

Results and Discussion 

Percent Yield. The percent yield is a measure of the conversion efficiency of 

glucose to ethanol and is defined as ethanol produced divided by glucose consumed 

times 100. Theoretical yield for ethanol production is 51% (31). The percent yield for 

pure cultures of Z mobilis ranged from 36 to 52% (Figure 2). Generally, the percent 

yields were lower for mixed-culture fermentations (Figure 3) than compared to pure-

culture fermentations at the same dilution rates, suggesting that the biofilm former 

S. viridosporus utilized some of the glucose for cell maintenance and growth. There 

was no appreciable difference in the percent yields among the various composite 

supports tested. The yields were consistently higher with the plastic composite supports 

than the yields obtained from the controls with polypropylene alone or with suspension-

culture fermentations at all the dilution rates tested in pure-cultures of Z mobilis. With 

the bacterial mixed-culture reactors there was no appreciable difference in the yields 

among the polypropylene-alone and composite supports. Biofilm formation by the 

S. viridosporus on the polypropylene supports most likely retained the ethanolic 
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microorganism in the bioreactor. A similar pattern was observed for pure- and mixed-

cultiire fermentations with S. cerevisiae (Figure 4 and 5). The percent yield for 

fermentation with pure- and mixed-culture of S. cerevisiae was much lower than that 

obtained with Z mobilis with ranges from 8 to 47% for pure-culture fermentation and 

15 to 38% with mixed-culture fermentation. 

Productivity. The productivity (g/l/h) is a measure of ethanol production per 

hour (calculated as ethanol produced in g/1 times the dilution rate in h"'). Ethanol 

productivity was very low in suspension culture fermentations for both Z mobilis and 

S. cerevisiae (Figure 2 and 4). For S. cerevisiae, the productivity improved in mixed-

culture fermentations with pure polypropylene supports. Productivities were generally 4 

to 9 times higher in pure-culture fermentations of Z mobilis than compared to pure-

culture fermentations of S. cerevisiae. A cell wash-out was not observed in any of the 

plastic composite support reactors with Z mobilis fermentation, even at the highest 

dilution rate of 10.56 h"' (Figure 2 and 3). The productivities were much lower in 

mixed-culture fermentations of Z mobilis, which could be due to the continuous supply 

of air needed for the aerobic S. viridosporus to grow. The cell growth rate and ethanol 

productivity for Z mobilis has been reported to decrease with increasing oxygen supply, 

with ethanol productivity being more sensitive to oxygen supply than the growth rate 

(28). 
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With S. cerevisiae, the productivities were higher in mixed-culture fermentations, 

with the plastic composite supports resuhing in higher productivities than the suspension 

cultures or pure-polypropylene support reactors in both pure- and mixed-culture 

fermentations. The highest productivity of 364 g/l/h was obtained in pure-culture 

fermentation of Z mobilis with soybean hull-zein-polypropylene composite supports 

(Figure 2) and a productivity of 149.5 g/l/h was obtained on com starch-soybean flour-

polypropylene composite material with mixed-culture fermentations (Figure 3). The 

highest productivity obtained with pure-cultures of S. cerevisiae was 40 g/l/h on 

soybean hull-soybean flour-polypropylene composite supports (Figure 4). The highest 

productivity obtained with mixed-culture fermentation was 190 g/l/h on oat hull-

polypropylene and 150 g/l/h on oat hull-soybean flour-polypropylene (Figure 5). These 

productivities are significantly higher than those currently reported in the literature 

(Table 2). 

Ethanol production. Ethanol and glucose concentrations for each dilution rate 

were analyzed from samples collected every 5-6 h over a 24 h period to determine the 

steady-state condition. Typically, a steady-state condition was observed after the first 

10 h of continuous fermentation at each dilution rate tested. The ethanol concentrations 

were consistently higher for plastic composite support reactors in both pure- and mixed-

culture fermentations than for cell-suspension cultures or reactors containing pure-

polypropylene as support material. The cell densities from the effluents of the 

composite supports with Z mobilis showed an absorbance (620 nm) of 1.17, 0.18 and 
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0.10 from soybean hull-zein, polypropylene alone and suspension culture reactors, 

respectively. This high cell density in the continuous fermentation effluent indicates 

enhanced cell grov^fth. The agricultural material blends in the composite support 

provides some micronutrient to the microorganism and/or it provides a surface for cell 

attachment promoting biofilm development. Cell attachment was confirmed by the 

intense color of the Gram stained harvested supports. There was also a 10-15% 

increase in the plastic composite support's weight at harvest. Support materials from 

bioreactors illustrating the highest productivity also demonstrated excellent clumping, 

weight gain and retention of color on Gram staining. Further long-term studies are 

needed to evaluate the performance of these composite support materials for use in 

continuous fermentations. 

Support Materials. In pure-culture fermentations with Z mobilis the reactors 

containing soybean hull-zein, com starch-soybean flour and cellulose-soybean flour 

plastic composite supports demonstrated high concentrations of ethanol and good 

biomass retention. The micronutrients (amino acids) in the soybean flour and zein of 

the composite supports have provided a better environment for the growth of the 

biofilm. In mixed-culture fermentations the reactors containing oat hull-zein and 

soybean hull-soybean flour plastic composite supports resulted in better ethanol 

productivities. In pure-culture fermentation with S. cerevisiae soybean hull-soybean 

flour, com hull-zein and soybean hull-zein plastic composites performed better. 

Whereas, oat hull-zein and oat hull-soybean flour plastic composites had a better 
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performance in mixed-culture fermentation. In our preliminary studies with the various 

plastic composite supports and culture combinations, good yeilds and ethanol 

concnetrations were not obtained for every material. Subsequently only the supports 

that performed better than or equal to the polypropylene-alone composite support were 

further investigated. 

These data suggests that the micoronutrients in the composite supports have 

improved ethanol fermentation by forming a better biofilm and thereby improving the 

rate of ethanol production. The presence of soybean flour, soybean hull and zein 

resulted in good biofilm formation and better productivities with Z mobilis in pure 

culture fermentation. The addition of cellulosic agricultural material alone to the plastic 

composite support did not achieve the same resuhs. Similarly with S. cerevisiae 

fermentations the reactors containing soybean hull, soy flour and zein formed better 

biofllms and resulted in increased ethanol production. Z. mobilis is a preferred 

organism for use in biofilm culture reactors because of it's high productivity and it's 

cell aggregation characteristics. Mixed-culture fermentations with Z mobilis did not 

improve ethanol productivity, but did reduce yields. Therefore, mixed-culture 

fermentations with Z mobilis and S. viridosporus is not recommended for use in biofilm 

reactors for ethanol production. However, mixed-culture fermentations may be 

considered with S. cerevisiae to obtain higher productivities but with greatly decreased 

yields. The type of plastic composite support material used in a bioreactor depends on 

the microorganism(s) used as demonstrated by the performance of different cultures 

employed in this research. Overall, these results indicate a tremendous gain in ethanol 
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productivities with biofilm bioreactors. 
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Table 1. Composition of polypropylene composite supports". 

PP-Composite chip Major Agricultural product (%) Minor Ag. product (5%) 

Polypropylene -

Cellulose 25 -

Cellulose-Soy Flour 20 Soy Flour 

Cellulose-Zein 20 Zein 

Com Hull 25 

Com Hull-Soy Flour 20 Soy Flour 

Com Hull-Zein 20 Zein 

Com Starch 25 -

Com Starch-Soy Flour 20 Soy Flour 

Com Starch-Zein 20 Zein 

Oat Hulls 25 

Oat Hulls-Soy Flour 20 Soy Flour 

Oat Hulls-Zein 20 Zein 

Soy Hulls 25 

Soy Hulls-Soy Flour 20 Soy Flour 

Soy Hulls-Zein 20 Zein 

" Seventy-five percent of each chip consisted of polypropylene. 
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Table 2. Summary of immobilized cell ethanol fermentations. 

Microorganism Substrate Max. EtOH 
Cone./ 
Productivity 

Type of reactor or 
Special technique 

Ref 

Saccharomyces 
cerevisiae 

Glucose 190 g/i/h Mixed-culture biofilm 
reactor with Oat hull-PP 
as support material 

This 
study 

Saccharomyces 
cerevisiae 

Glucose 40 g/l/h Biofilm bioreactor with 
Soy hull-soy flour-PP as 
support material 

This 
study 

Saccharomyces 
cerevisiae 

Sugar cane 
juice 

135 g/1 in 
8h 

On line removal of toxic 
end products by high 
alcohols & activated 
carbon 

32 

Saccharomyces 
cerevisiae 

Sugar cane 
water 

4.2-5.3 
g/100 m! 

Simultaneous extraction 
and fermentation 

27 

Saccharomyces 
uvarum 

Non aseptic 
cane molasses 

6.2 g/l/h CSTR with five stage 
system for substrate 
recirculation 

7 

Zymomonas 
mobilis 

Glucose 13 g/l/h Batch vertical rotating 
immobilized cell reactor 

2 

Zymomonas 
mobilis 

Glucose 63 g/l/h Continuous vertical 
rotating immobilized cell 
reactor 

2 

Zymomonas 
mobilis 

Glucose 42-46 g/l/h Cell reactor with trickle 
flow operation and 
sponge as packing 

23 

Zymomonas 
mobilis 

Sucrose 92 g/l/h Sugar conversion 
efficiency of 60% with 
10% sucrose feed. 

26 

Zymomonas 
mobilis 

Glucose 364 g/I/h Biofilm reactor with Soy 
hull-zein-pp as support 

This 
study 

Zymomonas 
mobilis 

Glucose 149.4 g/l/h Mixed-culture biofilm 
reactor with Com starch-
soy fiour-pp as support 

This 
study 
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Figure 1. Schematic diagram of the experimental setup of biofilm bioreactor (12). 
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Figure 2. Ethanol concentrations, yield and productivity in pure-culture fermentation 
with Z mobilis using 10% glucose feed at increasing dilution rates. 
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Figure 3. Ethanol concentration, percent yield and productivity in mixed-culture 
fermentation with Zymomonas mobilis and Streptomyces viridosporus with 
12.5% glucose feed at increasing dilution rates. 
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CONTINUOUS ETHANOL PRODUCTION IN BIOFILM REACTORS USING 
ZYMOMONAS MOBILIS AND SACCHAROMYCES CEREVISIAE 

A paper to be submitted to the Journal of Industrial Microbiology 

Mahipal Reddy Kunduru' and Anthony L. Pometto 

Abstract 

A 60 day continuous biofilm fermentation was performed with Zymomonas 

mobilis (ATCC 331821) or Saccharomyces cerevisiae (ATCC 24859) in reactors with 

polypropylene or plastic-composite supports. The polypropylene composite supports 

(2-3 mm chips) used in the reactors contained soybean hulls (20%) and zein (5%) or 

soybean hulls (20%) and soybean flour (5%) for Z mobilis and S. cerevisiae, 

respectively. A packed-bed reactor that approximated a trickling bed was custom made 

for Z mobilis fermentation at 30°C by using cylindrical bulb condensers (600 mm long) 

filled with the plastic composites or polypropylene-alone supports with a 25 ml working 

volume and a flow from top to bottom. For S. cerevisiae fermentation with continuous 

aeration and 30°C, the reactor columns consisted of cylindrical bulb condensers 

(400 mm long) filled with plastic composites or polypropylene alone supports with a 30 

ml working volume and a flow from bottom to top. Glucose-yeast extract (Ardamine Z, 

' Graduate student and Associate Professor respectively, Department of Food Science and Human Nutrition and Center for Crops 
Utilization Research, Iowa State University. 
' Author for correspondence. 
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Champlain Industries Inc, NJ) medium containing 10% glucose for Z mobilis and 7.5% 

glucose for S. cerevisiae was used. Continuous fermentations in replicates of two were 

performed for 60 days with dilution rates of 1.92 to 15.36 h"' for Z mobilis, and 0.18 to 

5.76 h"' for S. cerevisiae. Samples were collected every 8 hours and the ethanol 

concentrations and residual glucose determined by HPLC. 

Maximum ethanol productivities of 536 g/l/h with 38.6% yield and 499 g/l/h 

with 37% yield were obtained with Z mobilis on polypropylene and soybean hull-zein 

plastic composite supports, respectively. A maximum yield of 50% was observed at a 

dilution rate of 1.92 h"' for soybean hull-zein plastic composite supports, whereas with 

polypropylene-alone supports the maximum yield was 31.5%. A maximum yield of 

49% was observed for both polypropylene-alone and soybean hull-zein plastic 

composite supports at a dilution rate of 3.84 h"'. A dilution rate of 15.36 h"' produced 

yields of 35 and 32% on polypropylene and soybean hull-zein plastic composite 

supports, respectively, with a corresponding reduction in visible biofilm. 

With S. cerevisiae fermentation the ethanol production was lower with a 

maximum productivity of 76.1 g/l/h on the plastic composite support. Continuous 

fermentations with polypropylene alone were discontinued due to excessive back 

pressure and plugging of the reactor by the cell mass. In cell suspension-culture 

fermentations maximum productivities of 4.8 and 5.2 g/l/h were obtained with a yield of 

24.5 and 25.6% with S. cerevisiae and Z mobilis, respectively. Cell washout was 

observed at a dilution rate of 1.0 h"'. 
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Introduction 

Ethanol can be produced by chemical synthesis from petrochemical feedstocks or 

by microbial fermentation from renewable plant sources. The microbial production of 

ethanol was an important process prior to 1940, when chemical synthesis from 

petrochemical feedstock became more economical. Environmental concerns and 

possible future depletion of petroleum reserves, however, has revived an interest in 

ethanol fermentation. The use of ethanol as a fuel for vehicles in the United States has 

grown to nearly 900 million gallons in 1991 (11). In 1988, 400 million bushels of com 

in U.S were utilized for ethanol production adding $1 billion to farm income (23). 

Current ethanol production costs by fermentation are less than $1.25 per gallon 

depending upon the process used and the feedstock costs. 

Denatured alcohol has been used as a solvent for the production of nitrocellulose 

coatings, shellacs, inks, hydraulic fluids, liquid detergents, soaps, deodorants, perfumes, 

antiseptics and lotion. Undenatured ethanol is used by the cosmetic, pharmaceutical and 

food industries in the production of vitamins, flavors and essences, mouthwashes, blood 

products and fortified wines and as growth substance for single-cell-protein production 

(13) 

Even though ethanol has a wide variety of applications, its high cost is 

prohibitive. Raw materials are the major costs, representing up to 70% of the final cost. 

Continued sustainable growth in ethanol utilization depends on improvements in ethanol 

production and recovery. One approach for improved production is the use of 

immobilized-cell bioreactors, which retain the biocatalyst (microorganisms) in the 
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reactor as the substrate and product migrate through. 

Several techniques have been applied to improve ethanol fermentation. These 

include vacuum fermentors (9), cell recycling (22), hollow fiber membrane reactors v^ith 

recycling (7) and immobilization of cells (3, 5). Supports such as K-carrageenan gels 

(12), calcium alginate (15), ion exchange resins (17), vermiculite (2), y- alumina (16) 

were used for cell immobilization. Viable cells immobilized in solid gel matrices (i.e. 

calcium alginate) as beads have been studied in packed-bed and fluidized-bed reactors 

(25). However, these systems have relatively low efficiency and find limited application 

due to diffusional resistance of substrate or product and rapid removal of CO2 from the 

reactor, together with limited microbial viability for long term production of ethanol. 

Improving industrial fermentation productivity requires development of increased 

production rates with reduced fermentor volumes and decreased operating costs. 

Biofilms are a natural form of cell immobilization that result from microbial 

attachment to solid supports (4). Biofilms have been used in waste water treatment 

plants (18), for production of vinegar by the "quick vinegar process", mineral ore 

treatment (8) and ethanol production. This paper describes the use of biofilm reactors 

with plastic composite supports for enhanced ethanol production. Ethanol productivities 

10 to 100 times greater than those in suspension culture were obtained in the biofilm 

reactors. Zymomonas mobilis had higher productivities than Saccharomyces cerevisiae. 

A maximum productivity of 536 g/l/h with 38.6 % yield was obtained with Z mobilis 

using polypropylene supports, which is the highest reported to date. 
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Materials and Methods 

Microorganisms and media. Zymomonas mobilis (ATCC 31821) was maintained in a 

medium containing 2% (w/v) glucose, 0.5% (w/v) yeast extract (Difco Laboratories, 

Detroit, MI), 0.2% (w.v) (NH4)2S04, 0.05% (w/v) MgS04-7H20, 0.2% (w/v) KH2PO4 at 

4°C and was subcultured every two weeks. Saccharomyces cerevisiae (ATCC 24859) 

was maintained on a medium containing 2% (w/v) glucose, 1.0% (w/v) yeast extract 

(Difco) and 2% (w/v) peptone at 4°C and subcultured every 4-6 weeks. 

For Z mobilis the fermentation medium consisted of 0.5% (w/v) yeast extract 

(Ardamine Z, Champlain Industries, Clifton, NJ), 0.2% (w/v) (NH4)2S04, 0.05% (w/v) 

MgS04*7H20, 0.2% (w/v) BCH2PO4 and 10% (w/v) glucose (pH 5.8). Medium used for 

S. cerevisiae fermentations contained 0.6% (w/v) yeast extract (Ardamine Z,), 0.023% 

(w/v) CaCl2-2H20, 0.1% (w/v) MgS04»7H20, 0.15% (w/v) KH2PO4, 0.4% (w/v) 

(NH4)2S04 and 7.5% glucose (pH 5.8). Sixty liters of fermentation media were 

sterilized at 121°C for 15 min in a 72 L B Braun U50 fermentor (B. Braun, Allentown, 

PA) and transferred aseptically to pre-sterilized 50 L carboys. The phosphate salts were 

autoclaved separately and added to the medium aseptically after sterilization and prior to 

dispensing into carboys. 

Support materials. Polypropylene composite chips containing agricultural materials 

(25% w/w) were used as solid supports. The plastic composite supports were prepared 

by high-temperature extrusion of the polypropylene (Quantum USI Division, Columbus, 

OH.) and agricultural materials in a Brabender PL2000 counter-rotating twin-screw 
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extruder (C. W. Brabender Instruments, Inc., South Hackensack, N.J) by using the 

method of Demirci et al (10). The barrel temperatures were 200, 210 and 220°C, the 

die temperature was 220°C and the screw speed was 20 rpm. The agricultural products 

used were soybean flour (Archer Daniel Midland Co., Decatur, IL), ground soybean 

hulls (Iowa State University Center for Crops Utilization Research) and zein (Sigma 

Chemical Co., St. Louis, MO). Each agricultural material was vacuum dried for 48 h at 

110°C prior to being used for extrusion. Polypropylene pellets and specific agricultural 

blends were mixed for several minutes in a container and then added to the extruder 

hopper. Polypropylene was compounded with 20% soybean hull and 5% zein, or 20% 

soybean hull and 5% soybean flour, and extruded as 3-nun diameter rods, air cooled and 

then cut into chips of 2-3 mm in length with a pelletizer. 

Bioreactors. A packed-bed reactor that approximated a trickling bed was custom made 

for Z mobilis fermentation at 30°C. The reactor consisted of cylindrical bulb condenser 

(600 mm long. Coming part No. 2420-600) filled with 140 ml (65 g) of soybean hull-

zein plastic composites or polypropylene-alone supports with a 25 ml working volume 

and a flow from top to bottom (Figure 1). A constant volume of 25 ml was maintained 

by adjusting the height of the liquid break in the exit line. The lower and upper ends of 

the condenser were fitted with 3 ml syringe plungers with the top pad perforated with 

holes to retain the support materials within the reactor. Liquid breaks were used both in 

the feed and exit lines to prevent contamination when drawing samples or switching 

carboys. A rubber septum in the stopper on the liquid break in the feed inlet was used 
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for inoculating the microorganism into the reactor. 

A plug-flow bioreactor was custom made for S. cerevisiae fermentation with 

continuous aeration and 30°C. The reactor column consisted of cylindrical bulb 

condenser (400 nmi long, Coming part No. 2420-400) filled with the 65 ml (18.5 g) of 

soybean hull-soybean flour plastic composites or polypropylene-alone supports with a 

working volume of 30 ml. The reactor was built similar in construction to the one 

described for Z mobilis, but with the feed inlet from the bottom of the reactor (Figure 

2). Filter sterilized air was supplied to the reactors with S. cerevisiae. Continuous 

fermentations in replicates of two were carried out for 60 days with dilution rates of 

1.92 to 15.36 h"' for Z mobilis and 0.18 to 5.76 h"' for S. cerevisiae in replicates of two. 

A continuously stirred tank reactor (CSTR) (2 L Biostat M, B. Braun) with 

agitation at 250 rpm and a 300 ml working volume was used as a control. A Y-

connector was placed on the exit line with one arm of the Y-connector cormected to the 

effluent exit line and the other arm left open in the reactor. The height of the Y-

connector was adjusted to maintain a constant volume of 300 ml in the reactor. For Z. 

mobilis nitrogen gas was continuously supplied (160 ml/min) to the suspension reactors 

to maintain an anaerobic environment. For the S. cerevisiae CSTR, air was 

continuously supplied (160 ml/min). Liquid breaks in the feed inlet and exit line were 

used to prevent contamination during sampling. The fermentors were operated at 30°C 

with dilution rates of 0.5 h"' and 1.0 h"' for a week. 
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Continuous fermentation. Each reactor (packed bed or CSTR) was inoculated with 

1% of the specific 24 h culture and incubated in batch fermentation at 30°C for 24 

hours, then changed to continuous fermentation with various dilution rates. Samples 

were collected at 8 hour intervals from the exit line and analyzed for cell density, 

ethanol and glucose concentration. Dilution rates were routinely confirmed by 

measuring the exit volumes. 

Evaluation of the biofilm. The biofilm formed on the support material was evaluated 

visually by the accumulation of the cell mass on the chips and by Gram staining. Gram 

staining was performed on the supports after the fermentation and the resulting color 

development was compared visually with the color of the uninoculated Gram stained 

supports. Yeast cell stained violet. Weight increase of the supports was not determined 

due to the difficulty in removing the supports from the reactor. 

Analysis of culture broth. The suspended cell density in the reactors was measured by 

absorbance at 620 nm using a Bausch and Lomb Spectronic 20 spectrophotometer 

(Milton Roy, Rochester, NY). Percentage glucose and ethanol were measured by using 

a Waters High Pressure Liquid Chromatograph (Millipore Corporation, Milford, Ma.) 

equipped with Waters Model 401 refractive index detector, column heater, autosampler 

and computer controller. The separation of ethanol, glucose and other broth ingredients 

were done on a Bio-Rad Aminex HPX-8711 column (300 x 7.8 mm) (Bio-Rad 

Chemical Division, Richmond, Ca.) using 0.012 N Sulfuric acid as a mobile phase at a 
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65°C. 

Residence time. The residence time of the medium in the reactors was determined by 

injecting 1 ml of 1% aqueous solution of dextran blue dye (Sigma Chemical Co., St. 

Louis, MO) into the feed line of the fermentation medium. Flow rate was determined 

by collecting 10 ml samples until all the dye eluted from the reactor. The residence time 

was calculated by the fraction that had the highest intensity of color as observed by 

absorbance at 540 nm. 

Results and Discussion 

Continuous fermentation. For Z mobilis the reactors were operated at each dilution 

rate for a week imtil it achieved a dilution rate of 15.36 h"'. At this highest dilution rate 

the reactor was operated for 5 days as there was a visible decrease in biofilm and in 

ethanol production (figure 3). It was also difficult to maintain this high dilution rate 

because of the large consumption of media. There was 10.7 g/1 of glucose and 34.5 g/1 

ethanol in the effluent with a 10% glucose feed. Thereafter the fermentation was 

continued at a dilution rate of 7.68 h"' for another 30 days. With S. cerevisiae, the 

reactors were operated for one week at each of the dilution rates. At a dilution rate of 

5.6 h ' a decrease in the visible biofilm and an overall reductionin ethanol production 

(figure 4) was observed. There was 30.4 g/1 of glucose and 13 g/1 of ethanol in the 

effluent with a 7.5% glucose feed. Therefore, the reactors were operated at a dilution 
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rate of 2.8 h"' for the next 30 days. The ethanol concentrations and productivities 

obtained in the biofilm reactors operated for long term, were similar, to the ethanol 

concentrations and productivities observed at the corresponding dilution rates with both 

Z. mobilis and S. cerevisiae. The values of the replicates were within an average of 5%. 

Percent Yield. Percent yield is a measure of the conversion efficiency of glucose to 

ethanol and is defined as ethanol produced divided by glucose consumed. Theoretical 

yield for ethanol production is 51% (29). 

In suspension-culture reactors the yield was 25.6% with Z mobilis and in the 

biofilm reactor the yields were 31.5 to 49% with polypropylene-alone and 37 to 51% 

with soybean hull-zein-plastic composite supports (Figure 3). The percent yields were 

lower on polypropylene composites during the first few days of fermentation but were 

comparable by the end of first week of fermentation. With Z mobilis fermentation 

yields of 38.6 and 37% were obtained at a dilution rate of 15.36 h"' with polypropylene 

alone and soybean hull-zein plastic composite supports, respectively. With S. cerevisiae 

using soybean hull-soybean flour-plastic composite supports, the percent yield were 29 

and 43% at dilution rates of 5.76 h"' and 2.88 h"', respectively. A 24.5% yield was 

obtained with suspension culture fermentation of S. cerevisiae at a dilution rate of 

0.5 h"' (Figure 4). 

Ethanol productivity. Productivity (g/l/h) is a measure of ethanol production per hour 

(calculated as ethanol produced in g/I times the dilution rate in h"'). Ethanol 

productivities were low in suspension-culture fermentations for both Z. mobilis and S. 
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cerevisiae which were 5.25 and 4.85 g/l/h, respectively. Ethanol productivities of 76.1 

and 39.7 g/l/h were obtained with S. cerevisiae on soybean hull-soybean flour plastic 

composite supports at dilution rates of 2.88 and 1.44 h"', respectively (Figure 4). At a 

dilution rate of 5.76 h"' an ethanol productivity of 72.8 g/l/h was obtained with 29% 

yield. Fermentation with S. cerevisiae in polypropylene alone reactors was not 

successful as there was plugging of the reactors due to excess cell mass. Maximum 

productivity achieved in CSTR suspension-culture fermentations was 4.8 g/l/h for S. 

cerevisiae. A complete washout was observed when the suspension culture fermentation 

was carried out at a dilution rate of 1.0 h"'. A maximum productivity of 536 and 499 

g/l/h was observed on polypropylene and soybean hull-zein plastic composite supports 

with Z mobilis fermentation, respectively, at a dilution rate of 15.36 h"'. These ethanol 

productivities are significantly higher than those reported in the literature (Table 1). 

Ethanol production. Ethanol and glucose concentrations were analyzed from samples 

collected every 8 h to determine the steady-state condition. A steady state condition 

was usually observed within 24 h of continuous fermentations at each of the dilution 

rates tested. The ethanol concentrations were consistently higher for plastic composite 

support reactors for both Z mobilis and S. cerevisiae than for cell suspension reactors 

(Figure 3 and 4). The cell densities from the effluents of the plastic-composite-supports 

bioreactors were higher than the cell densities from the effluents of cell suspension 

CSTR (Figure 5). Continued ethanol production with corresponding increase in cell 

mass in the effluent at the dilution rates above the CSTR washout confirmed biofilm 
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formation. At these faster dilution rates suspended cell concentration increase or cell 

loss were linked with reduced yields. In the biofilm reactors, a decrease in the visible 

biofilm was observed at dilution rates of 15.36 h"' for Z mobilis and 5.76 h"' for S. 

cerevisiae. The ethanol concentrations were higher in the reactor with soybean hull-zein 

plastic composite support in the initial stages of Z mobilis fermentation. However, 

within a week there was no appreciable difference in the ethanol concentrations between 

the plastic composite support and the polypropylene-alone support bioreactor. The 

visual appearance of biofilm formation on the polypropylene alone supports in the initial 

stages of fermentation was very low which corresponded with the low cell densities in 

the effluent from those reactors. The protein and amino acids in the soybean hull and 

zein of the plastic composite support potentially provides the micronutrient for Z 

mobilis and provides a unique surface for biofilm formation. However, once cell mass 

started to accumulate in the trickle flow reactor there was no difference in the 

performance of the two supports. Highest ethanol concentrations of 50 g/1 were 

obtained with Z mobilis fermentation using soybean hull-zein plastic composite support 

at a dilution rate of 1.82 h"'. At the highest dilution rate tested (15.36 h"'), the ethanol 

concentrations were 32.5 and 34.5 g/1 in soybean hull-zein plastic composite and 

polypropylene-alone reactors, respectively. At the end of 60 days of fermentation the 

mean residence time of the medium was 7 min at a dilution rate of 7.60 h"'. Maximum 

ethanol concentrations of 10.5 g/1 was achieved in suspension culture fermentation of Z 

mobilis from 10 g/1 glucose feed. 

With S. cerevisiae the ethanol concentrations obtained were 28.4, 27.2 and 13 
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g/1 at dilution rates of 1.44, 2.88 and 5.76 h"', respectively, on soybean hull-soybean 

flour plastic composite support reactors. The mean residence times of the medium were 

29 and 18 min at dilution rates of 1.44 and 2.88 h"', respectively. Eventhough the 

residence time of the medium was longer in the biofilm reactors with S. cerevisiae the 

ethanol productivities obtained were lower than the biofilm reactors with Z mobilis. 

The ability to form better biofilms together with higher glucose uptake rates of 

Zymomonas resulted in higher productivities. The mean residence time was 7 min at a 

dilution rate of 7.68 h"' for Z mobilis. A maximum ethanol concentration of 9.7 g/1 was 

observed in suspension-culture fermentations at dilution rate of 0.5 h"' 

Support materials and bioreactor design. Soybean hull-zein plastic composite 

supports demonstrated high concentrations of ethanol and good retention of biomass in 

the early stages of fermentation whh Z mobilis. This suggests that the soybean hull and 

zein in the composite support is providing some micronutrient (proteins and amino 

acids) to Z mobilis and that the plastic composite support is providing a better support 

for cell attachment. However, as this down flow fermentation progressed there was no 

appreciable difference in the ethanol concentrations between the two supports. We 

attribute this to the reactor and support design which stimulated cell retention. The 

packed bed design which resulted from the plastic support shape (2-3 mm chips) 

increased the back pressure and decreased the flow rate at which medium was pumped 

into the reactor. Therefore, the actual flow rate was monitored daily. Adjustments were 

made, whenever needed, to the flow rate to maintain the desired dilution rate. 
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The S. cerevisiae fermentation in the polypropylene-alone upflow reactors plugged and 

resulted in excessive back pressure due to cell mass accumulation on the plastic support. 

The plugging of the bioreactor was due to the flocculating characteristics of the yeast 

and not because of the formation of the biofilm as noticed by the flocculation of the 

cells and compacting the support material without much biofilm formation. In the 

preliminary studies, this phenomenon was not observed. This may be because the flow 

rates were changed everyday and there was not enough time for the yeast to flocculate 

in the bioreactor. The plastic composite support with the yeast remained operational for 

60 days, which suggests that the agricultural material imparted some control of biofilm 

thickness. Support shape did contribute to bioreactor plugging. Therefore, different 

support shapes such as Raschig rings need to be evaluated before scale-up of this 

process. 

Conclusions 

The use of biofilm reactors for enhanced ethanol production in continuous 

fermentation was demonstrated. The use of plastic composite supports increased 

ethanol productivities for Z mobilis and S. cerevisiae fermentation. The use of Z 

mobilis in biofilm reactors with the composite material is suggested for continuous 

fermentation to improve ethanol productivities. The flocculating characteristic of the 

yeast rendered the bioreactor containing polypropylene supports inoperative. A further 
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change in plastic composite support will reduce the pressure build up and plugging of 

the bioreactor. In 60-day continuous fermentation dilution rates 3- and 4- fold higher 

than current CSTR fermentation can be achieved with only a minor reduction in percent 

yield. 
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Table 1. Summary of immobilized cell ethanol fermentation 

Microorganism Substrate Max. EtOH 
Cone./ 
Productivity 

Type of reactor or 
Special technique 

Ref 

Saccharomyces 
cerevisiae 

Glucose 76.1 g/l/h Biofilm bioreactors 
with Soy hull-soy flour 
plastic composite 
support 

This 
study 

Zymomonas mobilis Glucose 536 g/l/h Biofilm bioreactor with 
Soy hull-zein-PP 
supports 

This 
study 

Saccharomyces 
cerevisiae 

Sugar cane 
juice 

135 g/1 in 
8 h 

On line removal end 
products by high 
alcohols & activated 
carbon 

25 

Saccharomyces 
cerevisiae 

Sugar cane 
water 
suspension 

4.2-5.3 
g/1 CO ml 

Simultaneous extraction 
and fermentation 

22 

Saccharomyces 
uvarum 

Non aseptic 
cane 
molasses 

6.2 g/l/h Continuously stirred 
tank reactor with five 
stage system for 
substrate recirculation 

6 

Zymomonas mobilis Glucose 13 g/l/h Batch vertical rotating 
immobilized cell 
reactor 

1 

Zymomonas mobilis Glucose 63 g/I/h Continuous vertical 
rotating immobilized 
cell reactor 

1 

Zymomonas mobilis Glucose 42-46 g/l/h Cell reactor separators 
with trickle flow 
operation and 
sponge as packing 

19 

Zymomonas mobilis Sucrose 92 g/l/h Sugar conversion 
efficiency of 60% with 
10% sucrose feed. 
Culture isolated form 
sugarcane juice 

22 
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1. Feed reservoir 2. Air filters 3. Pump 4, 8. Liquid breaks 
5. Inoculadon port 6. Bioreactor witli supports 7. Water jacketed column 

Figure 1. Schematic diagram of an upflow biofilm bioreactor used for continuous 
fermentation with Z. mobilis. 
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1. Feed reservoir 2. Air filters 3. Pump 4, 8. Liquid brealcs 
5. Inocuiation port 6. Bioreactor witii supports 7. Water jacketed column 

Figure 2. Schematic diagram of a downflow biofilm bioreactor used for continuous 
fermentation with S. cerevisiae. 
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Figure 3. Ethanol concentrations, yield and productivities in downflow biofilm 
bioreactors used for continuous fermentation with Z mobilis (each data 
point represents the average value of two replicate data points taken every 
day. The fermentors were operated at each dilution rate for 5-7 days and 
increased sequentially). 
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CSTR Soybean hull-Soybean flour-polypropylene 

figure 4. Ethanol concentrations, yield and productivities in upflow biofilm 
bioreactors used for continuous fennentation by S. cerevisiae (each bar 
represents the average of two replicate data points taken every day. The 
fermentors were operated at each dilution rate for 5-7 days and increased 
sequentially). 
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Figxire 5. Absorbance (at 620 nm) of effluents form continuous fermentation 
reactors operated at different dilution rates (average of two replicates). 
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SUMMARY AND CONLCUSIONS 

Summary. The economic success of the production of fermentation ethanol 

depends on lowering the costs of production. This can be achieved by reducing the 

capital costs and by improving the fermentation processes by development of a simple 

and inexpensive continuous fermentation process. 

Plastic composite supports were prepared by temperture extrusion of 

polypropylene and up to 25% (w/w) various agricultural materials into 2-3 mm chips. 

Pure cultures of Zymomonas mobilis or Saccharomyces cerevisiae and mixed-cultures 

with either ethanol-producing micoroganism and the biofilm forming Streptomyces 

viridosporus T7A were evaluated in continuous fermentations at dilution rates of 0.18 to 

10.56 h"'. A maximum ethanol productivity of 374 g/l/h with 44% yield was obtained 

using soybean hull-zein plastic composite supports with Z mobilis and a 10% glucose 

feed. Mixed-culture fermentations with Z. mobilis and S. viridosporus resulted in lower 

yields and decreased productivities. Fermentations with S. cerevisiae in pure-culture 

resulted in a maximum ethanol productivity of 40 g/l/h with 47% yield on soybean hull-

soybean flour plastic composite supports. The maximum productivity of 190 g/l/h with 

35% yield was obtained in mixed-culture fermentations of yeast and streptomycete. The 

use of soybean flour, soybean hull and zein in the compoiste support provided 

micronutrients (proteins and aminoacids) to the microorganisms and resulted in better 

biofim formation and increased productivities. 

In long term fermentation studies using a down flow biofilm reactor for 

Z mobilis, the formation of biofilm was more on the plastic composite support during 
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the first week of fermentation. This suggests that the composite support provided 

micronutirents to the micororganism and enabled it to form a biofilm. However, there 

was no appreciable difference in the performance of the polypropylene and the plastic 

composite support over a longer period of time. This is because Z mobilis is a good 

biofilm former. Maximum ethanol productivities of 536 g/l/h and 499 g/l/h were 

obtained with Z mobilis using polypropylene alone and soybean hull-zein composite 

support, respectively. With yeast fermentations a maximum productivity of 78.4 g/l/h 

was obtained on soybean hull-soybean flour composite support. Reactors with 

polypropylene alone could not be operted with S. cerevisiae due to support shape and 

the excessive biuld up of the cell mass caused by the flocculating characteristic of the 

yeast. Visible biofilm formation was observed in all bioreactors within two weeks of 

operation. Suspension-culture fermentations resulted in ethanol productivities of 4.5 and 

5.2 g/l/h with yeast and bacteria, respectivley. A cell washout was observed in 

suspension culture fermentation when opertated at a dilution rate of 1.0 h"'. A change 

in the shape of the support needs to be evaluated to further imporve ethanol 

fermentation in biofilm reactors. 

Conclusions. 

1. Improved ethanol production can be achieved by using the plastic composite 

supports in biofilm bioreactors. 

2. Z mobilis is the preferred organism for use in biofilm bioreactors because of its 

excellent biofilm forming capability. 
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Mixed-culture fermentations resulted in decresased yields and producitivites with 

Z mobilis but improved the productivities with S. cerevisiae but with a reduced 

yield. Hence, mixed-culture fermentations are not suitable for use in biofilm 

reactors. 

The use of soybean hull, soybean flour and zein in the composite supports 

provided micronutrients to the microorganisms and resulted in the formation of 

better biofilm and increased producivities. 

A 10-100 fold increase in productivites were obtained in continuous fermentation 

with the plastic composite support when compared to the cell suspension culture 

fermentations with Z mobilis. 

The use of polypropylene alone is not preferred with S. cerevisiae fermentations 

because of the potential of plugging of the bioreactor. 

A change in the shape of the support needs to be evaluated to further improve 

the ethanol production in biofilm reactors. 
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